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The plot on the front page is an illustration of the Central Limit Theorem (CLT). To
put it shortly, it states that when sampling a population: as the sample size increases,
then the mean of the sample converges to a normal distribution – no matter the distri-
bution of the population. The thumb rule is that the normal distribution can be used
for the sample mean when the sample size n is above 30 observations (n is the number
observations in the sample). The plot is created by simulating 100000 sample means
X̄ = ∑n

i=1 Xi (where Xi is an observation from a distribution) and plotting their his-
togram with the CLT distribution on top (the red linie). The upper is for the normal, the
mid is for the uniform and the lower is for the exponential distribution. We can thus see



that as n increase, then the distribution of the simulated sample means x̄ approaches
the distribution stated by the CLT (it is the normal distribution X̄ ∼ N

(
µ, σ2

n

)
, where

µ is the mean and σ is the standard deviation of the population), see more in Section
3.1.4.
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Chapter 1

Introduction, descriptive statistics, R
and data visualization

This is the first chapter in the eight-chapter DTU Introduction to Statistics book.
It consists of eight chapters:

1. Introduction, descriptive statistics, R and data visualization

2. Probability and simulation

3. Statistical analysis of one and two sample data

4. Statistics by simulation

5. Simple linear regression

6. Multiple linear regression

7. Analysis of categorical data

8. Analysis of variance (analysis of multi-group data)

In this first chapter the idea of statistics is introduced together with some of the
basic summary statistics and data visualization methods. The software used
throughout the book for working with statistics, probability and data analysis is
the open source environment R. An introduction to R is included in this chapter.
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1.1 What is Statistics - a primer

To catch your attention we will start out trying to give an impression of the
importance of statistics in modern science and engineering.

In the well respected New England Journal of medicine a millennium editorial on
the development of medical research in a thousand years was written:

EDITORIAL: Looking Back on the Millennium in Medicine, N Engl J Med, 342:42-
49, January 6, 2000, NEJM200001063420108.

They came up with a list of 11 points summarizing the most important devel-
opments for the health of mankind in a millennium:

• Elucidation of human anatomy and physiology

• Discovery of cells and their substructures

• Elucidation of the chemistry of life

• Application of statistics to medicine

• Development of anaesthesia

• Discovery of the relation of microbes to disease

• Elucidation of inheritance and genetics

• Knowledge of the immune system

• Development of body imaging

• Discovery of antimicrobial agents

• Development of molecular pharmacotherapy

The reason for showing the list here is pretty obvious: one of the points is Ap-
plication of Statistics to Medicine! Considering the other points on the list, and
what the state of medical knowledge was around 1000 years ago, it is obviously
a very impressive list of developments. The reasons for statistics to be on this
list are several and we mention two very important historical landmarks here.
Quoting the paper:

"One of the earliest clinical trials took place in 1747, when James Lind treated 12
scorbutic ship passengers with cider, an elixir of vitriol, vinegar, sea water, oranges
and lemons, or an electuary recommended by the ship’s surgeon. The success of the
citrus-containing treatment eventually led the British Admiralty to mandate the provi-
sion of lime juice to all sailors, thereby eliminating scurvy from the navy." (See also
James_Lind).

http://www.nejm.org/doi/full/10.1056/NEJM200001063420108
http://en.wikipedia.org/wiki/James_Lind
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Still today, clinical trials, including the statistical analysis of the outcomes, are
taking place in massive numbers. The medical industry needs to do this in
order to find out if their new developed drugs are working and to provide doc-
umentation to have them accepted for the World markets. The medical industry
is probably the sector recruiting the highest number of statisticians among all
sectors. Another quote from the paper:

"The origin of modern epidemiology is often traced to 1854, when John Snow demon-
strated the transmission of cholera from contaminated water by analyzing disease rates
among citizens served by the Broad Street Pump in London’s Golden Square. He ar-
rested the further spread of the disease by removing the pump handle from the polluted
well." (See also John_Snow_(physician)).

Still today, epidemiology, both human and veterinarian, maintains to be an ex-
tremely important field of research (and still using a lot of statistics). An im-
portant topic, for instance, is the spread of diseases in populations, e.g. virus
spreads like Ebola and others.

Actually, today more numbers/data than ever are being collected and the amounts
are still increasing exponentially. One example is Internet data, that internet
companies like Google, Facebook, IBM and others are using extensively. A
quote from New York Times, 5. August 2009, from the article titled “For To-
day’s Graduate, Just One Word: Statistics” is:

“I keep saying that the sexy job in the next 10 years will be statisticians," said Hal
Varian, chief economist at Google. ‘and I’m not kidding.’ ”

The article ends with the following quote:

“The key is to let computers do what they are good at, which is trawling these massive
data sets for something that is mathematically odd,” said Daniel Gruhl, an I.B.M. re-
searcher whose recent work includes mining medical data to improve treatment. “And
that makes it easier for humans to do what they are good at - explain those anomalies.”

1.2 Statistics at DTU Compute

At DTU Compute at the Technical University of Denmark statistics is used,
taught and researched mainly within four research sections:

• Statistics and Data Analysis

• Dynamical Systems

• Image Analysis & Computer Graphics

• Cognitive Systems

http://en.wikipedia.org/wiki/John_Snow_(physician)
http://www.compute.dtu.dk/english
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Each of these sections have their own focus area within statistics, modelling
and data analysis. On the master level it is an important option within DTU
Compute studies to specialize in statistics of some kind on the joint master pro-
gramme in Mathematical Modelling and Computation (MMC). And a Statisti-
cian is a well-known profession in industry, research and public sector institu-
tions.

The high relevance of the topic of statistics and data analysis today is also illus-
trated by the extensive list of ongoing research projects involving many and di-
verse industrial partners within these four sections. Neither society nor indus-
try can cope with all the available data without using highly specialized peo-
ple in statistical techniques, nor can they cope and be internationally competi-
tive without continuously further developing these methodologies in research
projects. Statistics is and will continue to be a relevant, viable and dynamic
field. And the amount of experts in the field continues to be small compared
to the demand for experts, hence obtaining skills in statistics is for sure a wise
career choice for an engineer. Still for any engineer not specialising in statistics,
a basic level of statistics understanding and data handling ability is crucial for
the ability to navigate in modern society and business, which will be heavily
influenced by data of many kinds in the future.

1.3 Statistics - why, what, how?

Often in society and media, the word statistics is used simply as the name for
a summary of some numbers, also called data, by means of a summary table
and/or plot. We also embrace this basic notion of statistics, but will call such
basic data summaries descriptive statistics or explorative statistics. The meaning
of statistics goes beyond this and will rather mean “how to learn from data in an
insightful way and how to use data for clever decision making”, in short we call this
inferential statistics . This could be on the national/societal level, and could be
related to any kind of topic, such as e.g. health, economy or environment, where
data is collected and used for learning and decision making. For example:

• Cancer registries

• Health registries in general

• Nutritional databases

• Climate data

• Macro economic data (Unemployment rates, GNP etc. )

• etc.

http://www.dtu.dk/english/Education/msc/Programmes/mathematical_modelling_and_computation
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The latter is the type of data that historically gave name to the word statistics. It
originates from the Latin ‘statisticum collegium’ (state advisor) and the Italian
word ‘statista’ (statesman/politician). The word was brought to Denmark by
the Gottfried Achenwall from Germany in 1749 and originally described the
processing of data for the state, see also History_of_statistics.

Or it could be for industrial and business applications:

• Is machine A more effective than machine B?

• How many products are we selling on different markets?

• Predicting wind and solar power for optimizing energy systems

• Do we produce at the specified quality level?

• Experiments and surveys for innovative product development

• Drug development at all levels at e.g. Novo Nordisk A/S or other phar-
maceutical companies

• Learning from "Big Data"

• etc.

In general, it can be said say that we learn from data by analysing the data
with statistical methods. Therefore statistics will in practice involve mathematical
modelling, i.e. using some linear or non-linear function to model the particular
phenomenon. Similarly, the use of probability theory as the concept to describe
randomness is extremely important and at the heart of being able to “be clever”
in our use of the data. Randomness express that the data just as well could have
come up differently due to the inherent random nature of the data collection
and the phenomenon we are investigating.

Probability theory is in its own right an important topic in engineering relevant
applied mathematics. Probability based modelling is used for e.g. queuing sys-
tems (queuing for e.g. servers, websites, call centers etc.), for reliability mod-
elling, and for risk analysis in general. Risk analysis encompasses a vast di-
versity of engineering fields: food safety risk (toxicological and/or allergenic),
environmental risk, civil engineering risks, e.g. risk analysis of large building
constructions, transport risk, etc. The present material focuses on the statistical
issues, and treats probability theory at a minimum level, focusing solely on the
purpose of being able to do proper statistical inference and leaving more elabo-
rate probability theory and modelling to other texts.

There is a conceptual frame for doing statistical inference: in Statistical inference
the observed data is a sample, that is (has been) taken from a population. Based
on the sample, we try to generalize to (infer about) the population. Formal
definitions of what the sample and the population is are given by:

http://en.wikipedia.org/wiki/History_of_statistics
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Definition 1.1 Sample and population

• An observational unit is the single entity about which information is
sought (e.g. a person)

• An observational variable is a property which can be measured on the
observational unit (e.g. the height of a person)

• The statistical population consists of the value of the observational vari-
able for all observational units (e.g. the heights of all people in Den-
mark)

• The sample is a subset of the statistical population, which has been cho-
sen to represent the population (e.g. the heights of 20 persons in Den-
mark).

See also the illustration in Figure 1.1.

Randomly
selected

(Infinite) Statistical population

Sample mean
x̄

Mean
µ

Sample
{x1, x2, . . . , xn}

Statistical
Inference

Figure 1.1: Illustration of statistical population and sample, and statistical in-
ference. Note that the bar on each person indicates that the it is the height (the
observational variable) and not the person (the observational unit), which are
the elements in the statistical population and the sample. Notice, that in all
analysis methods presented in this text the statistical population is assumed to
be very large (or infinite) compared to the sample size.



Chapter 1 1.3 STATISTICS - WHY, WHAT, HOW? 7

This is all a bit abstract at this point. And likely adding to the potential confu-
sion about this is the fact that the words population and sample will have a “less
precise” meaning when used in everyday language. When they are used in a
statistical context the meaning is very specific, as given by the definition above.
Let us consider a simple example:

Example 1.2

The following study is carried out (actual data collection): the height of 20 persons
in Denmark is measured. This will give us 20 values x1, . . . , x20 in cm. The sample
is then simply these 20 values. The statistical population is the height values of all
people in Denmark. The observational unit is a person.

The meaning of sample in statistics is clearly different from how a chemist or
medical doctor would use the word, where a sample would be the actual sub-
stance in e.g. the petri dish. Within this book, when using the word sample, then
it is always in the statistical meaning i.e. a set of values taken from a statistical
population.

With regards to the meaning of population within statistics the difference to the
everyday meaning is less obvious: but note that the statistical population in the
example is defined to be the height values of people, not actually the people.
Had we measured the weights instead the statistical population would be quite
different. Also later we will realize that statistical populations in engineering
contexts can refer to many other things than populations as in a group of or-
ganisms, hence stretching the use of the word beyond the everyday meaning.
From this point: population will be used instead of statistical population in order
to simplify the text.

The population in a given situation will be linked with the actual study and/or
experiment carried out - the data collection procedure sometimes also denoted
the data generating process. For the sample to represent relevant information
about the population it should be representative for that population. In the ex-
ample, had we only measured male heights, the population we can say any-
thing about would be the male height population only, not the entire height
population.

A way to achieve a representative sample is that each observation (i.e. each
value) selected from the population, is randomly and independently selected of
each other, and then the sample is called a random sample.
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1.4 Summary statistics

The descriptive part of studying data maintains to be an important part of statis-
tics. This implies that it is recommended to study the given data, the sample,
by means of descriptive statistics as a first step, even though the purpose of a full
statistical analysis is to eventually perform some of the new inferential tools
taught in this book, that will go beyond the pure descriptive part. The aims of
the initial descriptive part are several, and when moving to more complex data
settings later in the book, it will be even more clear how the initial descriptive
part serves as a way to prepare for and guide yourself in the subsequent more
formal inferential statistical analysis.

The initial part is also called an explorative analysis of the data. We use a number
of summary statistics to summarize and describe a sample consisting of one or
two variables:

• Measures of centrality:

– Mean

– Median

– Quantiles

• Measures of “spread”:

– Variance

– Standard deviation

– Coefficient of variation

– Inter Quartile Range (IQR)

• Measures of relation (between two variables):

– Covariance

– Correlation

One important point to notice is that these statistics can only be calculated for
the sample and not for the population - we simply don’t know all the values
in the population! But we want to learn about the population from the sample.
For example when we have a random sample from a population we say that the
sample mean (x̄) is an estimate of the mean of the population, often then denoted
µ, as illustrated in Figure 1.1.
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Remark 1.3

Notice, that we put ’sample’ in front of the name of the statistic, when it is
calculated for the sample, but we don’t put ’population’ in front when we
refer to it for the population (e.g. we can think of the mean as the true mean).

HOWEVER we don’t put sample in front of the name every time it should
be there! This is to keep the text simpler and since traditionally this is not
strictly done, for example the median is rarely called the sample median,
even though it makes perfect sense to distinguish between the sample me-
dian and the median (i.e. the population median). Further, it should be
clear from the context if the statistic refers to the sample or the population,
when it is not clear then we distinguish in the text. Most of the way we do
distinguish strictly for the mean, standard deviation, variance, covariance and
correlation.

1.4.1 Measures of centrality

The sample mean is a key number that indicates the centre of gravity or cen-
tring of the sample. Given a sample of n observations x1, . . . , xn, it is defined as
follows:

Definition 1.4 Sample mean

The sample mean is the sum of observations divided by the number of ob-
servations

x̄ = 1
n

n

∑
i=1

xi. (1-1)

Sometimes this is refereed to as the average.

The median is also a key number indicating the center of sample (note that to
be strict we should call it ’sample median’, see Remark 1.3 above). In some
cases, for example in the case of extreme values or skewed distributions, the
median can be preferable to the mean. The median is the observation in the
middle of the sample (in sorted order). One may express the ordered observa-
tions as x(1), . . . , x(n), where then x(1) is the smallest of all x1, . . . , xn (also called



Chapter 1 1.4 SUMMARY STATISTICS 10

the minimum) and x(n) is the largest of all x1, . . . , xn (also called the maximum).

Definition 1.5 Median

Order the n observations x1, . . . , xn from the smallest to largest:
x(1), . . . , x(n). The median is defined as:

• If n is odd the median is the observation in position n+1
2 :

Q2 = x( n+1
2 ). (1-2)

• If n is even the median is the average of the two observations in posi-
tions n

2 and n+2
2 :

Q2 =
x( n

2 ) + x( n+2
2 )

2
. (1-3)

The reason why it is denoted with Q2 is explained below in Definition 1.8.

Example 1.6 Student heights

A random sample of the heights (in cm) of 10 students in a statistics class was

168 161 167 179 184 166 198 187 191 179 .

The sample mean height is

x̄ = 1
10

(168 + 161 + 167 + 179 + 184 + 166 + 198 + 187 + 191 + 179) = 178.

To find the sample median we first order the observations from smallest to largest

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)
161 166 167 168 179 179 184 187 191 198

.

Note that having duplicate observations (like e.g. two of 179) is not a problem - they
all just have to appear in the ordered list. Since n = 10 is an even number the median
becomes the average of the 5th and 6th observations

x( n
2 ) + x( n+2

2 )
2

=
x(5) + x(6)

2
= 179 + 179

2
= 179.
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As an illustration, let’s look at the results if the sample did not include the 198 cm
height, hence for n = 9

x̄ = 1
9

(168 + 161 + 167 + 179 + 184 + 166 + 187 + 191 + 179) = 175.78.

then the median would have been

x( n+1
2 ) = x(5) = 179.

This illustrates the robustness of the median compared to the sample mean: the
sample mean changes a lot more by the inclusion/exclusion of a single “extreme”
measurement. Similarly, it is clear that the median does not depend at all on the
actual values of the most extreme ones.

The median is the point that divides the observations into two halves. It is of
course possible to find other points that divide into other proportions, they are
called quantiles or percentiles (note, that this is actually the sample quantile or
sample percentile, see Remark 1.3).

Definition 1.7 Quantiles and percentiles

The p quantile also called the 100p% quantile or 100p’th percentile, can be
defined by the following procedure: a

1. Order the n observations from smallest to largest: x(1), . . . , x(n)

2. Compute pn

3. If pn is an integer: average the pn’th and (pn + 1)’th ordered observa-
tions. Then the p quantile is

qp =
(

x(np) + x(np+1)
)

/2 (1-4)

4. If pn is a non-integer: take the “next one” in the ordered list. Then the
p’th quantile is

qp = x(dnpe), (1-5)

where dnpe is the ceiling of np, that is, the smallest integer larger than
np

aThere exist several other formal definitions. To obtain this definition of quan-
tiles/percentiles in R use quantile(. . . , type=2). Using the default in R is also a perfectly
valid approach - just a different one.
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Often calculated percentiles are the so-called quartiles (splitting the sample in
quarters, i.e. 0%, 25%, 50%, 75% and 100%):

• q0, q0.25, q0.50, q0.75 and q1

Note that the 0’th percentile is the minimum (smallest) observation and the
100’th percentile is the maximum (largest) observation. We have specific names
for the three other quartiles:

Definition 1.8 Quartiles

Q1 = q0.25 = “lower quartile” = “0.25 quantile” = “25’th percentile”
Q2 = q0.50 = “median” = “0.50 quantile” = “50’th percentile”
Q3 = q0.75 = “upper quartile” = “0.75 quartile” = “75’th percentile”

Example 1.9 Student heights

Using the n = 10 sample from Example 1.6 and the ordered data table from there,
let us find the lower and upper quartiles (i.e. Q1 and Q3), as we already found
Q2 = 179.

First, the Q1: with p = 0.25, we get that np = 2.5 and we find that

Q1 = x(d2.5e) = x(3) = 167,

and since n · 0.75 = 7.5, the upper quartile becomes

Q3 = x(d7.5e) = x(8) = 187.

We could also find the 0’th percentile

q0 = min(x1, . . . , xn) = x(1) = 161,

and the 100’th percentile

q1 = max(x1, . . . , xn) = x(10) = 198.

Finally, 10’th percentile (i.e. 0.10 quantile) is

q0.10 =
x(1) + x(2)

2
= 161 + 166

2
= 163.5,

since np = 1 for p = 0.10.



Chapter 1 1.4 SUMMARY STATISTICS 13

1.4.2 Measures of variability

A crucial aspect to understand when dealing with statistics is the concept of
variability - the obvious fact that not everyone in a population, nor in a sample,
will be exactly the same. If that was the case they would all equal the mean
of the population or sample. But different phenomena will have different de-
grees of variation: An adult (non dwarf) height population will maybe spread
from around 150 cm up to around 210 cm with very few exceptions. A kitchen
scale measurement error population might span from −5 g to +5 g. We need a
way to quantify the degree of variability in a population and in a sample. The
most commonly used measure of sample variability is the sample variance or
its square root, called the sample standard deviation:

Definition 1.10 Sample variance

The sample variance of a sample x1, . . . , xn is the sum of squared differences
from the sample mean divided by n− 1

s2 = 1
n− 1

n

∑
i=1

(xi − x̄)2. (1-6)

Definition 1.11 Sample standard deviation

The sample standard deviation is the square root of the sample variance

s =
√

s2 =
√

1
n− 1

n

∑
i=1

(xi − x̄)2. (1-7)

The sample standard deviation and the sample variance are key numbers of
absolute variation. If it is of interest to compare variation between different
samples, it might be a good idea to use a relative measure - most obvious is the
coefficient of variation:
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Definition 1.12 Coefficient of variation

The coefficient of variation is the sample standard deviation seen relative to
the sample mean

V = s
x̄

. (1-8)

We interpret the standard deviation as the average absolute deviation from the mean
or simply: the average level of differences, and this is by far the most used measure
of spread. Two (relevant) questions are often asked at this point (it is perfectly
fine if you didn’t wonder about them by now and you might skip the answers
and return to them later):

Remark 1.13

Question: Why not actually compute directly what the interpretation is
stating, which would be: 1

n ∑n
i=1 |xi − x̄|?

Answer: This is indeed an alternative, called the mean absolute deviation, that
one could use. The reason for most often measuring “mean deviation”
NOT by the Mean Absolute Deviation statistic, but rather by the sample
standard deviation s, is the so-called theoretical statistical properties of
the sample variance s2. This is a bit early in the material for going into
details about this, but in short: inferential statistics is heavily based
on probability considerations, and it turns out that it is theoretically
much easier to put probabilities related to the sample variance s2 on
explicit mathematical formulas than probabilities related to most other
alternative measures of variability. Further, in many cases this choice
is in fact also the optimal choice in many ways.
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Remark 1.14

Question: Why divide by n − 1 and not n in the formulas of s and s2?
(which also appears to fit better with the stated interpretation)

Answer: The sample variance s2 will most often be used as an estimate of
the (true but unknown) population variance σ2, which is the average
of (xi − µ)2 in the population. In doing that, one should ideally com-
pare each observation xi with the population mean, usually called µ.
However, we do not know µ and instead we use x̄ in the computation
of s2. In doing so, the squared differences (xi− x̄)2 that we compute in
this way will tend to be slightly smaller than those we ideally should
have used: (xi− µ)2 (as the observations themselves were used to find
x̄ so they will be closer to x̄ than to µ). It turns out, that the correct way
to correct for this is by dividing by n− 1 instead of n.

Spread in the sample can also be described and quantified by quartiles:

Definition 1.15 Range

The range of the sample is

Range = Maximum−Minimum = Q4 −Q0 = x(n) − x(1). (1-9)

The Inter Quartile Range (IQR) is the middle 50% range of data defined as

IQR = q0.75 − q0.25 = Q3 −Q1. (1-10)
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Example 1.16 Student heights

Consider again the n = 10 data from Example 1.6. To find the variance let us com-
pute the n = 10 differences to the mean, that is (xi − 178)

-10 -17 -11 1 6 -12 20 9 13 1 .

So, if we square these and add them up we get

10

∑
i=1

(xi − x̄)2 = 102 + 172 + 112 + 12 + 62 + 122 + 202 + 92 + 132 + 12 = 1342.

Therefore the sample variance is

s2 = 1
9

1342 = 149.1,

and the sample standard deviation is

s = 12.21.

We can interpret this as: people are on average around 12 cm away from the mean
height of 178 cm. The Range and Inter Quartile Range (IQR) are easily found from
the ordered data table in Example 1.6 and the earlier found quartiles in Example 1.9

Range = maximum−minimum = 198− 161 = 37,

IQR = Q3 −Q1 = 187− 167 = 20.

Hence 50% of all people (in the sample) lie within 20 cm.

Note, that the standard deviation in the example has the physical unit cm,
whereas the variance has cm2. This illustrates the fact that the standard de-
viation has a more direct interpretation than the variance in general.

1.4.3 Measures of relation: correlation and covariance

When two observational variables are available for each observational unit, it
may be of interest to quantify the relation between the two, that is to quantify
how the two variables co-vary with each other, their sample covariance and/or
sample correlation.
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Example 1.17 Student heights and weights

In addition to the previously given student heights we also have their weights (in
kg) available

Heights (xi) 168 161 167 179 184 166 198 187 191 179
Weights (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9

.

The relation between weights and heights can be illustrated by the so-called scatter-
plot, cf. Section 1.6.4, where e.g. weights are plotted versus heights:
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x = 178

y = 78.1

Each point in the plot corresponds to one student - here illustrated by using the
observation number as plot symbol. The (expected) relation is pretty clear now -
different wordings could be used for what we see:

• Weights and heights are related to each other

• Higher students tend to weigh more than smaller students

• There is an increasing pattern from left to right in the "point cloud”

• If the point cloud is seen as an (approximate) ellipse, then the ellipse clearly is
horizontally upwards ”tilted”.

• Weights and heights are (positively) correlated to each other

The sample covariance and sample correlation coefficients are a summary statis-
tics that can be calculated for two (related) sets of observations. They quantify
the (linear) strength of the relation between the two. They are calculated by
combining the two sets of observations (and the means and standard deviations
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from the two) in the following ways:

Definition 1.18 Sample covariance

The sample covariance is

sxy = 1
n− 1

n

∑
i=1

(xi − x̄) (yi − ȳ) . (1-11)

Definition 1.19 Sample correlation

The sample correlation coefficient is

r = 1
n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
=

sxy

sx · sy
, (1-12)

where sx and sy is the sample standard deviation for x and y respectively.

When xi− x̄ and yi− ȳ have the same sign, then the point (xi, yi) give a positive
contribution to the sample correlation coefficient and when they have opposite
signs the point give a negative contribution to the sample correlation coefficient,
as illustrated here:

Example 1.20 Student heights and weights

The sample means are found to be

x̄ = 178 and ȳ = 78.1.

Using these we can show how each student deviate from the average height and
weight (these deviations are exactly used for the sample correlation and covariance
computations)

Student 1 2 3 4 5 6 7 8 9 10
Height (xi) 168 161 167 179 184 166 198 187 191 179
Weight (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9
(xi − x̄) -10 -17 -11 1 6 -12 20 9 13 1
(yi − ȳ) -12.6 -19.8 -10 7.6 2.4 -14.7 24.5 13.3 8.6 0.8
(xi − x̄)(yi − ȳ) 126.1 336.8 110.1 7.6 14.3 176.5 489.8 119.6 111.7 0.8

Student 1 is below average on both height and weight (−10 and − 12.6). Student
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10 is above average on both height and weight (+1 and + 0.8).s

The sample covariance is then given by the sum of the 10 numbers in the last row of
the table

sxy = 1
9

(126.1 + 336.8 + 110.1 + 7.6 + 14.3 + 176.5 + 489.8 + 119.6 + 111.7 + 0.8)

= 1
9
· 1493.3

= 165.9

And the sample correlation is then found from this number and the standard devia-
tions

sx = 12.21 and sy = 14.07.

(the details of the sy computation is not shown). Thus we get the sample correlation
as

r = 165.9
12.21 · 14.07

= 0.97.

Note how all 10 contributions to the sample covariance are positive in the ex-
ample case - in line with the fact that all observations are found in the first
and third quadrants of the scatter plot (where the quadrants are defined by the
sample means of x and y). Observations in second and fourth quadrant would
contribute with negative numbers to the sum, hence such observations would
be from students with below average on one feature while above average on the
other. Then it is clear that: had all students been like that, then the covariance
and the correlation would have been negative, in line with a negative (down-
wards) trend in the relation.

We can state (without proofs) a number of properties of the sample correlation
r:

Remark 1.21 Properties of the sample correlation, r

• r is always between −1 and 1: −1 ≤ r ≤ 1

• r measures the degree of linear relation between x and y

• r = ±1 if and only if all points in the scatterplot are exactly on a line

• r > 0 if and only if the general trend in the scatterplot is positive

• r < 0 if and only if the general trend in the scatterplot is negative
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The sample correlation coefficient measures the degree of linear relation be-
tween x and y, which imply that we might fail to detect non-linear relationships,
illustrated in the following plot of four different point clouds and their sample
correlations:
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The sample correlation in both the bottom plots are close to zero, but as we see
from the plot this number itself doesn’t imply that there no relation between y
and x - which clearly is the case in the bottom right and highly non-linear case.

Sample covariances and correlation are closely related to the topic of linear re-
gression, treated in Chapter 5 and 6 , where we will treat in more detail how
we can find the line that could be added to such scatter-plots to describe the re-
lation between x and y in a different (but related) way, as well as the statistical
analysis used for this.

1.5 Introduction to R and RStudio

The program R is an open source software for statistics that you can download
to your own laptop for free. Go to http://mirrors.dotsrc.org/cran/ and se-

http://mirrors.dotsrc.org/cran/
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lect your platform (Windows, Mac or Linux) and follow instructions to install.

RStudio is a free and open source integrated development environment (IDE)
for R. You can run it on your desktop (Windows, Mac or Linux) or even over
the web using RStudio Server. It works as (an extended) alternative to running R
in the basic way through a terminal. This will be used in the course. Download
it from http://www.rstudio.com/ and follow installation instructions. To use
the software, you only need to open RStudio (R will then be used by RStudio for
carrying out the calculations).

1.5.1 Console and scripts

Once you have opened RStudio, you will see a number of different windows.
One of them is the console. Here you can write commands and execute them by
hitting Enter. For instance:

> # Add two numbers in the console
> 2+3

[1] 5

In the console you cannot go back and change previous commands
and neither can you save your work for later. To do this you need to
write a script. Go to File->New->R Script. In the script you can write
a line and execute it in the console by hitting Ctrl+Enter (Windows)
or Cmd+Enter (Mac). You can also mark several lines and execute them
all at the same time.

1.5.2 Assignments and vectors

If you want to assign a value to a variable, you can use = or <-. The latter is the
preferred by R-users, so for instance:

> # Assign the value 3 to y
> y <- 3

It is often useful to assign a set of values to a variable like a vector. This is done
with the function c (short for concatenate):

http://www.rstudio.com/
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# Concatenate numbers to a vector
x <- c(1, 4, 6, 2)
x

[1] 1 4 6 2

Use the colon :, if you need a sequence, e.g. 1 to 10:

> # A sequence from 1 to 10
> x <- 1:10
> x

[1] 1 2 3 4 5 6 7 8 9 10

You can also make a sequence with a specific step-size different from 1

> # Sequence with specified steps
> x <- seq(0, 1, by=0.1)
> x

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

If you are in doubt of how to use a certain function, the help page can be opened
by typing ? followed by the function, e.g. ?seq.

If you know Matlab then this document Hiebeler-matlabR.pdf can be
very helpful.

1.5.3 Descriptive statistics

All the summary statistics measures presented in Section 1.4 can be found as
functions or part of functions in R:

• mean(x) - mean value of the vector x

• var(x) - variance

• sd(x) - standard deviation

• median(x) - median

http://cran.r-project.org/doc/contrib/Hiebeler-matlabR.pdf
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• quantile(x,p) - finds the pth quantile. p can consist of several different
values, e.g. quantile(x,c(0.25,0.75)) or quantile(x,c(0.25,0.75), type=2)

• cov(x, y) - the covariance of the vectors x and y

• cor(x, y) - the correlation

Please again note that the words quantiles and percentiles are used interchange-
ably - they are essentially synonyms meaning exactly the same, even though the
formal distinction has been clarified earlier.

Example 1.22 Summary statistics in R

Consider again the n = 10 data from Example 1.6. We can read these data into R
and compute the sample mean and sample median as follows:

# Sample Mean and Median
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
mean(x)

[1] 178

median(x)

[1] 179

The sample variance and sample standard deviation are found as follows:

# Sample variance and standard deviation
var(x)

[1] 149.1

sqrt(var(x))

[1] 12.21

sd(x)

[1] 12.21

The sample quartiles can be found by using the quantile function as follows:
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# Sample quartiles
quantile(x, type=2)

0% 25% 50% 75% 100%
161 167 179 187 198

The option “type=2” makes sure that the quantiles found by the function is found
using the definition given in Definition 1.7. By default, the quantile function would
use another definition (not detailed here). Generally, we consider this default choice
just as valid as the one explicitly given here, it is merely a different one. Also the
quantile function has an option called “probs” where any list of probability values
from 0 to 1 can be given. For instance:

# Sample quantiles 0%, 10%,..,90%, 100%:
quantile(x, probs=seq(0, 1, by=0.10), type=2)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
161.0 163.5 166.5 168.0 173.5 179.0 184.0 187.0 189.0 194.5 198.0

1.5.4 Use of R in the course and at the exam

You should bring your laptop with R installed with you to the teaching activity
and to the exam. We will need access to the so-called probability distributions
to do statistical computations, and the values of these distributions are not oth-
erwise part of the written material: These probability distributions are part of
many different software, also Excel, but it is part of the syllabus to be able to
work with these within R.

Apart from access to these probability distributions, the R-software is used in
three ways in our course

1. As a pedagogical learning tool: The random variable simulation tools in-
built in R enables the use of R as a way to illustrate and learn the principles
of statistical reasoning that are the main purposes of this course.

2. As a pocket calculator substitute - that is making R calculate ”manually”
- by simple routines - plus, minus, squareroot etc. whatever needs to be
calculated, that you have identified by applying the right formulas from
the proper definitions and methods in the written material.

3. As a ”probability calculus and statistical analysis machine” where e.g.
with some data fed into it, it will, by inbuilt functions and procedures
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do all relevant computations for you and present the final results in some
overview tables and plots.

We will see and present all three types of applications of R during the course.
For the first type, the aim is not to learn how to use the given R-code itself
but rather to learn from the insights that the code together with the results of
applying it is providing. It will be stated clearly whenever an R-example is of
this type. Types 2 and 3 are specific tools that should be learned as a part of the
course and represent tools that are explicitly relevant in your future engineering
activity. It is clear that at some point one would love to just do the last kind
of applications. However, it must be stressed that even though the program is
able to calculate things for the user, understanding the details of the calculations
must NOT be forgotten - understanding the methods and knowing the formulas
is an important part of the syllabus, and will be checked at the exam.

Remark 1.23 BRING and USE pen and paper PRIOR to R

For many of the exercises that you are asked to do it will not be possible
to just directly identify what R-command(s) should be used to find the re-
sults. The exercises are often to be seen as what could be termed “problem
mathematics” exercises. So, it is recommended to also bring and use pen
and paper to work with the exercises to be able to subsequently know how
to finally finish them by some R-calculations. (If you adjusted yourself to
some digital version of ”pen-and-paper”, then this is fine of course.)

Remark 1.24 R is not a substitute for your brain activity in this
course!

The software R should be seen as the most fantastic and easy computa-
tional companion that we can have for doing statistical computations that
we could have done ”manually”, if we wanted to spend the time doing
it. All definitions, formulas, methods, theorems etc. in the written mate-
rial should be known by the student, as should also certain R-routines and
functions.

A good question to ask yourself each time that you apply en inbuilt R-function
is: ”Would I know how to make this computation ”manually”?”. There are few
exceptions to this requirement in the course, but only a few. And for these the
question would be: ”Do I really understand what R is computing for me now?”
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1.6 Plotting, graphics - data visualisation

A really important part of working with data analysis is the visualisation of the
raw data, as well as the results of the statistical analysis – the combination of
the two leads to reliable results. Let us focus on the first part now, which can
be seen as being part of the explorative descriptive analysis also mentioned in
Section 1.4. Depending on the data at hand different types of plots and graphics
could be relevant. One can distinguish between quantitative vs. categorical data.
We will touch on the following type of basic plots:

• Quantitative data:

– Frequency plots and histograms

– box plots

– cumulative distribution

– Scatter plot (xy plot)

• Categorical data:

– Bar charts

– Pie charts

1.6.1 Frequency distributions and the histogram

The frequency distribution is the count of occurrences of values in the sample
for different classes using some classification, for example in intervals or by
some other property. It is nicely depicted by the histogram, which is a bar plot
of the occurrences in each classes.
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Example 1.25 Histogram in R

Consider again the n = 10 sample from Example 1.6.

# A histogram of the heights
hist(x)

x

Fr
eq

ue
nc

y

160 170 180 190 200

0
1

2
3

4

The default histogram uses equidistant interval widths (the same width for all
intervals) and depicts the raw frequencies/counts in each interval. One may
change the scale into showing what we will learn to be densities by dividing the
raw counts by n and the interval width, i.e.

"Interval count"
n · ("Interval width") .

By plotting the densities a density histogram also called the empirical density
the area of all the bars add up to 1:
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Example 1.26 Empirical density in R

# A density histogram or empirical density of the heights
hist(x, prob=TRUE, col="red", nclass=8)

x
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The R-function hist makes some choice of the number of classess based on
the number of observations - it may be changed by the user option nclass as
illustrated here, although the original choice seems better in this case due to the
very small sample.

1.6.2 Cumulative distributions

The cumulative distribution can be visualized simply as the cumulated relative
frequencies either across classes, as also used in the histogram, or individual
data points, which is then called the empirical cumulative distribution function:
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Example 1.27 Cumulative distribution plot in R

# Empirical cumulative distribution plot
plot(ecdf(x), verticals=TRUE)
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The empirical cumulative distribution function Fn is a step function with jumps
i/n at observation values, where i is the number of identical(tied) observations
at that value.

For observations (x1, x2, . . . , xn), Fn(x) is the fraction of observations less or
equal to x, that mathematically can be expressed as

Fn(x) = ∑
j where xj≤x

1
n

. (1-13)

1.6.3 The box plot and the modified box plot

The so-called box plot in its basic form depicts the five quartiles (min, Q1, me-
dian, Q3, max) with a box from Q1 to Q3 emphasizing the Inter Quartile Range
(IQR):
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Example 1.28 Box plot in R

# A basic box plot of the heights (range=0 makes it "basic")
boxplot(x, range=0, col="red", main="Basic box plot")
# Add the blue text
text(1.3, quantile(x), c("Minimum","Q1","Median","Q3","Maximum"),

col="blue")

16
0
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0

18
0

19
0

Basic box plot

Minimum

Q1

Median

Q3

Maximum

In the modified box plot the whiskers only extend to the min. and max. obser-
vation if they are not too far away from the box: defined to be 1.5× IQR. Obser-
vations further away are considered as extreme observations and will be plotted
individually - hence the whiskers extend from the smallest to the largest obser-
vation within a distance of 1.5× IQR of the box (defined as either 1.5× IQR
larger than Q3 or 1.5× IQR smaller than Q1).
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Example 1.29 Box plot in R

If we add an extreme observation, 235 cm, to the heights sample and make the mod-
ified box plot - the default in R- and the basic box plot, then we have:

# Add an extreme value and box plot
boxplot(c(x, 235), col="red", main="Modified box plot")
boxplot(c(x, 235), col="red", main="Basic box plot", range=0)
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Modified box plot
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Q3
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Note that since there was no extreme observations among the original 10 observa-
tions, the two ”different” plots would be the same if we didn’t add the extreme 235
cm observation.

The box plot hence is an alternative to the histogram in visualising the distribu-
tion of the sample. It is a convenient way of comparing distributions in different
groups, if such data is at hand.

Example 1.30 Box plot in R

This example shows some ways of working with R to illustrate data.

In another statistics course the following heights of 17 female and 23 male students
were found:

Males 152 171 173 173 178 179 180 180 182 182 182 185
185 185 185 185 186 187 190 190 192 192 197

Females 159 166 168 168 171 171 172 172 173 174 175 175
175 175 175 177 178
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The two modified box plots of the distributions for each gender can be generated by
a single call to the boxplot function:

# Box plot with two groups
Males <- c(152, 171, 173, 173, 178, 179, 180, 180, 182, 182, 182, 185,

185 ,185, 185, 185 ,186 ,187 ,190 ,190, 192, 192, 197)
Females <-c(159, 166, 168 ,168 ,171 ,171 ,172, 172, 173, 174 ,175 ,175,

175, 175, 175, 177, 178)
boxplot(list(Males, Females), col=2:3, names=c("Males", "Females"))

Males Females

16
0

17
0

18
0

19
0

At this point, it should be noted that in real work with data using R, one would
generally not import data into R by explicit listings in an R-script as here. This
only works for very small data sets. Usually the data is imported from some-
where else, e.g. from a spread sheet exported in a .csv (comma separated values)
format as shown here:
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Example 1.31 Read and explore data in R

The gender grouped student heights data used in Example 1.30 is avail-
able as a .csv-file via http://www2.compute.dtu.dk/courses/introstat/data/
studentheights.csv. The structure of the data file, as it would appear in a spread
sheet program (e.g. LibreOffice Calc or Excel) is two columns and 40+1 rows includ-
ing a header row:

1 Height Gender
2 152 male
3 171 male
4 173 male
. . .
. . .
24 197 male
25 159 female
26 166 female
27 168 female
. . .
. . .
39 175 female
40 177 female
41 178 female

The data can now be imported into R with the read.table function:

# Read the data (note that per default sep="," but here semicolon)
studentheights <- read.table("studentheights.csv", sep=";", dec=".",

header=TRUE, stringsAsFactors=TRUE)

The resulting object studentheights is now a so-called data.frame, which is the
class used for such tables in R. There are some ways of getting a quick look at what
kind of data is really in a data set:

http://www2.compute.dtu.dk/courses/introstat/data/studentheights.csv
http://www2.compute.dtu.dk/courses/introstat/data/studentheights.csv
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# Have a look at the first 6 rows of the data
head(studentheights)

Height Gender
1 152 male
2 171 male
3 173 male
4 173 male
5 178 male
6 179 male

# Get an overview
str(studentheights)

'data.frame': 40 obs. of 2 variables:
$ Height: int 152 171 173 173 178 179 180 180 182 182 ...
$ Gender: Factor w/ 2 levels "female","male": 2 2 2 2 2 2 2 2 2 2 ...

# Get a summary of each column/variable in the data
summary(studentheights, quantile.type=2)

Height Gender
Min. :152.0 female:17
1st Qu.:172.5 male :23
Median :177.5
Mean :177.9
3rd Qu.:185.0
Max. :197.0

For quantitative variables we get the quartiles and the mean from summary. For cat-
egorical variables we see the category frequencies. A data structure like this is com-
monly encountered (and often the only needed) for statistical analysis. The gender
grouped box plot can now be generated by:
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# Box plot for each gender
boxplot(Height ~ Gender, data=studentheights, col=2:3)

female male
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The R-syntax Height ~ Gender with the tilde symbol “~” is one that we will use a
lot in various contexts such as plotting and model fitting. In this context it can be
understood as “Height is plotted as a function of Gender”.

1.6.4 The Scatter plot

The scatter plot can be used for two quantitative variables. It is simply one
variable plotted versus the other using some plotting symbol.

Example 1.32 Explore data included in R

Now we will use a data set available as part of R itself. Both base R and many add-
on R-packages include data sets, which can be used for testing and practising. Here
we will use the mtcars data set. If you write:

# See information about the mtcars data
?mtcars

you will be able to read the following as part of the help info:

“The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel con-
sumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74
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models). A data frame with 32 observations on 11 variables. Source: Henderson and Velle-
man (1981), Building multiple regression models interactively. Biometrics, 37, 391-411.”

Let us plot the gasoline use, (mpg=miles pr. gallon), versus the weight (wt):

# To make 2 plots
par(mfrow=c(1,2))
# First the default version
plot(mtcars$wt, mtcars$mpg, xlab="wt", ylab="mpg")
# Then a nicer version
plot(mpg ~ wt, xlab="Car Weight (1000lbs)", data=mtcars,

ylab="Miles pr. Gallon", col=factor(am),
main="Inverse fuel usage vs. size")

# Add a legend to the plot
legend("topright", c("Automatic transmission","Manual transmission"),

col=c("black","red"), pch=1, cex=0.7)
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Automatic transmission
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In the second plot call we have used the so-called formula syntax of R, that was
introduced above for the grouped box plot. Again, it can be read: “mpg is plotted
as a function of wt”. Note also how a color option, col=factor(am), can be used to
group the cars with and without automatic transmission, stored in the data column
am in the data set.

1.6.5 Bar plots and Pie charts

All the plots described so far were for quantitative variables. For categorical
variables the natural basic plot would be a bar plot or pie chart visualizing the
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relative frequencies in each category.

Example 1.33 Bar plots and Pie charts in R

For the gender grouped student heights data used in Example 1.30 we can plot the
gender distribution by:

# Barplot
barplot(table(studentheights$Gender), col=2:3)

female male
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# Pie chart
pie(table(studentheights$Gender), cex=1, radius=1)

female

male
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1.6.6 More plots in R?

A good place for getting more inspired on how to do easy and nice plots in R is:
http://www.statmethods.net/.

http://www.statmethods.net/
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1.7 Exercises

Exercise 1.1 Infant birth weight

In a study of different occupational groups the infant birth weight was recorded
for randomly selected babies born by hairdressers, who had their first child.
The following table shows the weight in grams (observations specified in sorted
order) for 10 female births and 10 male births:

Females (x) 2474 2547 2830 3219 3429 3448 3677 3872 4001 4116
Males (y) 2844 2863 2963 3239 3379 3449 3582 3926 4151 4356

Solve at least the following questions a)-c) first “manually” and then by the
inbuilt functions in R. It is OK to use R as alternative to your pocket calculator
for the “manual” part, but avoid the inbuilt functions that will produce the
results without forcing you to think about how to compute it during the manual
part.

a) What is the sample mean, variance and standard deviation of the female
births? Express in your own words the story told by these numbers. The
idea is to force you to interpret what can be learned from these numbers.

b) Compute the same summary statistics of the male births. Compare and
explain differences with the results for the female births.

c) Find the five quartiles for each sample — and draw the two box plots with
pen and paper (i.e. not using R.)

d) Are there any “extreme” observations in the two samples (use the modified
box plot definition of extremness)?

e) What are the coefficient of variations in the two groups?
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Exercise 1.2 Course grades

To compare the difficulty of 2 different courses at a university the following
grades distributions (given as number of pupils who achieved the grades) were
registered:

Course 1 Course 2 Total
Grade 12 20 14 34
Grade 10 14 14 28
Grade 7 16 27 43
Grade 4 20 22 42
Grade 2 12 27 39
Grade 0 16 17 33
Grade -3 10 22 32
Total 108 143 251

a) What is the median of the 251 achieved grades?

b) What are the quartiles and the IQR (Inter Quartile Range)?

Exercise 1.3 Cholesterol

In a clinical trial of a cholesterol-lowering agent, 15 patients’ cholesterol (in
mmol L−1) was measured before treatment and 3 weeks after starting treatment.
Data is listed in the following table:

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Before 9.1 8.0 7.7 10.0 9.6 7.9 9.0 7.1 8.3 9.6 8.2 9.2 7.3 8.5 9.5
After 8.2 6.4 6.6 8.5 8.0 5.8 7.8 7.2 6.7 9.8 7.1 7.7 6.0 6.6 8.4

a) What is the median of the cholesterol measurements for the patients before
treatment, and similarly after treatment?

b) Find the standard deviations of the cholesterol measurements of the pa-
tients before and after treatment.
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c) Find the sample covariance between cholesterol measurements of the pa-
tients before and after treatment.

d) Find the sample correlation between cholesterol measurements of the pa-
tients before and after treatment.

e) Compute the 15 differences (Dif = Before − After) and do various sum-
mary statistics and plotting of these: sample mean, sample variance, sam-
ple standard deviation, boxplot etc.

f) Observing such data the big question is whether an average decrease in
cholesterol level can be “shown statistically”. How to formally answer
this question is presented in Chapter 3, but consider now which summary
statistics and/or plots would you look at to have some idea of what the
answer will be?

Exercise 1.4 Project start

a) Go to CampusNet and take a look at the first project and read the project
page on the website for more information (02323.compute.dtu.dk/projects
or 02402.compute.dtu.dk/projects). Follow the steps to import the data
into R and get started with the explorative data analysis.

https://02323.compute.dtu.dk/projects
https://02402.compute.dtu.dk/projects
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Chapter 2

Probability and simulation

In this chapter elements from probability theory are introduced. These are
needed to form the basic mathematical description of randomness. For example
for calculating the probabilities of outcomes in various types of experimental or
observational study setups. Small illustrative examples, such as e.g. dice rolls
and lottery draws, and natural phenomena such as the waiting time between
radioactive decays are used as throughout. But the scope of probability theory
and it’s use in society, science and business, not least engineering endeavour,
goes way beyond these small examples. The theory is introduced together with
illustrative R code examples, which the reader is encouraged to try and interact
with in parallel to reading the text. Many of these are of the learning type, cf.
the discussion of the way R is used in the course in Section 1.5.

2.1 Random variable

The basic building blocks to describe random outcomes of an experiment are
introduced in this section. The definition of an experiment is quite broad. It can
be an experiment, which is carried out under controlled conditions e.g. in a
laboratory or flipping a coin, as well as an experiment in conditions which are
not controlled, where for example a process is observed e.g. observations of
the GNP or measurements taken with a space telescope. Hence, an experiment
can be thought of as any setting in which the outcome cannot be fully known.
This for example also includes measurement noise, which are random “errors”
related to the system used to observe with, maybe originating from noise in
electrical circuits or small turbulence around the sensor. Measurements will
always contain some noise.

First the sample space is defined:
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Definition 2.1

The sample space S is the set of all possible outcomes of an experiment.

Example 2.2

Consider an experiment in which a person will throw two paper balls with the pur-
pose of hitting a wastebasket. All the possible outcomes forms the sample space of
this experiment as

S =
{

(miss,miss), (hit,miss), (miss,hit), (hit,hit)
}

. (2-1)

Now a random variable can be defined:

Definition 2.3

A random variable is a function which assigns a numerical value to each out-
come in the sample space. In this book random variables are denoted with
capital letters, e.g.

X, Y, . . . . (2-2)

Example 2.4

Continuing the paper ball example above, a random variable can be defined as the
number of hits, thus

X
(
(miss,miss)

)
= 0, (2-3)

X
(
(hit,miss)

)
= 1, (2-4)

X
(
(miss,hit)

)
= 1, (2-5)

X
(
(hit,hit)

)
= 2. (2-6)

In this case the random variable is a function which maps the sample space S to
positive integers, i.e. X : S→N0.
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Remark 2.5

The random variable represents a value of the outcome before the experiment
is carried out. Usually the experiment is carried out n times and there are
random variables for each of them

{Xi : 1, 2, . . . , n}. (2-7)

After the experiment has been carried out n times a set of values of the ran-
dom variable is available as

{xi : 1, 2, . . . , n}. (2-8)

Each value is called a realization or observation of the random variable and
is denoted with a small letter sub-scripted with an index i, as introduced in
Chapter 1.

Finally, in order to quantify probability, a random variable is associated with
a probability distribution. The distribution can either be discrete or continuous
depending on the nature of the outcomes:

• Discrete outcomes can for example be: the outcome of a dice roll, the num-
ber of children per family, or the number of failures of a machine per year.
Hence some countable phenomena which can be represented by an inte-
ger.

• Continuous outcomes can for example by: the weight of the yearly har-
vest, the time spend on homework each week, or the electricity generation
per hour. Hence a phenomena which can be represented by a continuous
value.

Furthermore, the outcome can either be unlimited or limited. This is most ob-
vious in the case discrete case, e.g. a dice roll is limited to the values between
1 and 6. However it is also often the case for continuous random variables, for
example many are non-negative (weights, distances, etc.) and proportions are
limited to a range between 0 and 1.

Conceptually there is no difference between the discrete and the continuous
case, however it is easier to distinguish since the formulas, which in the discrete
case are with sums, in the continuous case are with integrals. In the remaining
of this chapter, first the discrete case is presented and then the continuous.
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2.2 Discrete random variables

In this section discrete distributions and their properties are introduced. A dis-
crete random variable has discrete outcomes and follows a discrete distribution.

To exemplify, consider the outcome of one roll of a fair six-sided dice as the
random variable Xfair. It has six possible outcomes, each with equal probability.
This is specified with the probability density function.

Definition 2.6 The pdf of a discrete random variable

For a discrete random variable X the probability density function (pdf) is

f (x) = P(X = x). (2-9)

It assigns a probability to every possible outcome value x.
A discrete pdf fulfils two properties: there are no negative probabilities for
any outcome value

f (x) ≥ 0 for all x, (2-10)

and the probabilities for all outcome values sum to one

∑
all x

f (x) = 1. (2-11)

Example 2.7

For the fair dice the pdf is

x 1 2 3 4 5 6
fXfair(x) 1

6
1
6

1
6

1
6

1
6

1
6

If the dice is not fair, maybe it has been modified to increase the probability of rolling
a six, the pdf could for example be

x 1 2 3 4 5 6
fXunfair(x) 1

7
1
7

1
7

1
7

1
7

2
7

where Xunfair is a random variable representing the value of a roll with the unfair
dice.
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The pdfs are plotted: the left plot shows the pdf of a fair dice and the right plot the
pdf of an unfair dice:
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Remark 2.8

Note that the pdfs has subscript with the symbol of the random variable to
which they belong. This is done when there is a need to distinguish between
pdfs e.g. for several random variables. For example if two random variables
X and Y are used in same context, then: fX(x) is the pdf for X and fY(x) for
Y, similarly the sample standard deviation sX is for X and sY is for Y, and so
forth.

The cumulated distribution function (cdf), or simply the distribution function, is of-
ten used.

Definition 2.9 The cdf of a discrete random variable

The cumulated distribution function (cdf) for the discrete case is the probability
of realizing an outcome below or equal to the value x

F(x) = P(X ≤ x) = ∑
j where xj≤x

f (xj) = ∑
j where xj≤x

P(X = xj). (2-12)

The probability that the outcome of X is in a range is

P(a < X ≤ b) = F(b)− F(a). (2-13)
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For the fair dice the probability of an outcome below or equal to 4 can be calcu-
lated

FXfair(4) =
4

∑
j=1

fXfair(xj) = 1
6

+ 1
6

+ 1
6

+ 1
6

= 2
3

. (2-14)

Example 2.10

For the fair dice the cdf is

x 1 2 3 4 5 6
FXfair(x) 1

6
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5
6 1

The cdf for a fair dice is plotted in the left plot and the cdf for an unfair dice is plotted
in the right plot:
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2.2.1 Introduction to simulation

One nice thing about having computers available is that we try things in virtual
reality - this we can here use here to play around while learning how prob-
ability and statistics work. With the pdf defined an experiment can easily be
simulated, i.e. instead of carrying out the experiment in reality it is carried out
using a model on the computer. When the simulation includes generating ran-
dom numbers it is called a stochastic simulation. Such simulation tools are readily
available within R, and it can be used for as well learning purposes as a way to
do large scale complex probabilistic and statistical computations. For now it
will be used in the first way.

Example 2.11 Simulation of rolling a dice

Let’s simulate the experiment of rolling a dice using the following R code (open the
file chapter2-ProbabilitySimulation.R and try it)

# Make a random draw from (1,2,3,4,5,6) with equal probability
# for each outcome
sample(1:6, size=1)

The simulation becomes more interesting when the experiment is repeated many
times, then we have a sample and can calculate the empirical density function (or em-
pirical pdf or density histogram, see Section 1.6.1) as a discrete histogram and actually
“see” the shape of the pdf

# Simulate a fair dice

# Number of simulated realizations
n <- 30
# Draw independently from the set (1,2,3,4,5,6) with equal probability
xFair <- sample(1:6, size=n, replace=TRUE)
# Count the number of each outcome using the table function
table(xFair)
# Plot the pdf
par(mfrow=c(1,2))
plot(rep(1/6,6), type="h", col="red", ylim=c(0,1), lwd=10)
# Plot the empirical pdf
lines(table(xFair)/n, lwd=4)
# Plot the cdf
plot(cumsum(rep(1/6,6)), ylim=c(0,1), lwd=10, type="h", col="red")
# Add the empirical cdf
lines(cumsum(table(xFair)/n), lwd=4, type="h")

../book-scripts/chapter2-ProbabilitySimulation.R


Chapter 2 2.2 DISCRETE RANDOM VARIABLES 49

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

D
en

si
ty

pdf
Empirical pdf

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
um

ul
at

ed
de

ns
it

y
Try simulating with different number of rolls n and describe how this affects
the accuracy of the empirical pdf compared to the pdf?

Now repeat this with the unfair dice

# Simulate an unfair dice

# Number of simulated realizations
n <- 30
# Draw independently from the set (1,2,3,4,5,6) with higher
# probability for a six
xUnfair <- sample(1:6, size=n, replace=TRUE, prob=c(rep(1/7,5),2/7))
# Plot the pdf
plot(c(rep(1/7,5),2/7), type="h", col="red", ylim=c(0,1), lwd=10)
# Plot the empirical density function
lines(table(xUnfair)/n, lwd=4)
# Plot the cdf
plot(cumsum(c(rep(1/7,5),2/7)), ylim=c(0,1), lwd=10, type="h", col="red")
# Add the empirical cdf
lines(cumsum(table(xUnfair)/n), lwd=4, type="h")
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Compare the fair and the unfair dice simulations:

How did the empirical pdf change?

By simply observing the empirical pdf can we be sure to distinguish be-
tween the fair and the unfair dice?

How does the number of rolls n affect how well we can distinguish the two
dices?

One reason to simulate becomes quite clear here: it would take considerably
more time to actually carry out these experiments. Furthermore, sometimes
calculating the theoretical properties of random variables (e.g. products of sev-
eral random variables etc.) are impossible and simulations can be a useful way
to obtain such results.

Random number sequences generated with software algorithms have the prop-
erties of real random numbers, e.g. they are independent, but are in fact de-
terministic sequences depending on a seed, which sets an initial value of the
sequence. Therefore they are named pseudo random numbers, since they behave
like and are used as random numbers in simulations, but are in fact determin-
istic sequences.
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Remark 2.12 Random numbers and seed in R

In R the initial values can be set with a single number called the seed as
demonstrated with the following R code. As default the seed is created from
the time of start-up of a new instance of R. A way to generate truly (i.e. non-
pseudo) random numbers can be to sample some physical phenomena, for
example atmospheric noise as done at www.random.org.

# The random numbers generated depends on the seed

# Set the seed
set.seed(127)
# Generate a (pseudo) random sequence
sample(1:10)

[1] 3 6 10 1 9 7 5 8 4 2

# Generate again and see that new numbers are generated
sample(1:10)

[1] 5 7 6 8 2 1 3 4 9 10

# Set the seed and the same numbers as before just after the
# seed was set are generated
set.seed(127)
sample(1:10)

[1] 3 6 10 1 9 7 5 8 4 2

2.2.2 Mean and variance

In Chapter 1 the sample mean and the sample variance were introduced. They
indicate respectively the centring and the spread of the observations in a sam-
ple. In this section the mean and variance are introduced. They are properties
of the distribution of a random variable, they are called population parameters.
The mean indicates where the distribution is centred. The variance indicates
the spread of the distribution.

www.random.org
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Mean and expected value

The mean (µ) of a random variable is the population parameter which most sta-
tistical analysis focus on. It is formally defined as a function E(X): the expected
value of the random variable X.

Definition 2.13 Mean value

The mean of a discrete random variable X is

µ = E(X) =
∞

∑
j=1

xj f (xj), (2-15)

where xj is the value and f (xj) is the probability that X takes the outcome
value xj.

The mean is simply the weighted average over all possible outcome values,
weighted with the corresponding probability. As indicated in the definition
there might be infinitely many possible outcome values, hence, even if the total
sum of probabilities is one, then the probabilities must go sufficiently fast to
zero for increasing values of X in order for the sum to be defined.

Example 2.14

For the fair dice the mean is calculated by

µxfair = E(Xfair) = 1
1
6

+ 2
1
6

+ 3
1
6

+ 4
1
6

+ 5
1
6

+ 6
1
6

= 3.5,

for the unfair dice the mean is

µxunfair = E(Xunfair) = 1
1
7

+ 2
1
7

+ 3
1
7

+ 4
1
7

+ 5
1
7

+ 6
2
7
≈ 3.86.

The mean of a random variable express the limiting value of an average of many
outcomes. If a fair dice is rolled a really high number of times the sample mean
of these will be very close to 3.5. For the statistical reasoning related to the use of
a sample mean as an estimate for µ, the same property ensures that envisioning
many sample means (with the same n), a meta like thinking, then the mean of
such many repeated sample means will be close to µ.

After an experiment has been carried out n times then the sample mean or average
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can be calculated as previously defined in Chapter 1

µ̂ = x̄ = 1
n

n

∑
i

xi. (2-16)

It is called a statistic, which means that it is calculated from a sample. Note the
use of a hat in the notation over µ: this indicates that it is an estimate of the real
underlying mean.

Our intuition tells us that the estimate (µ̂) will be close to true underlying ex-
pectation (µ) when n is large. This is indeed the case, to be more specific
E
[

1
n ∑ Xi

]
= µ (when E[Xi] = µ), and we say that the average is a central

estimator for the expectation. The exact quantification of these qualitative state-
ments will be covered in Chapter 3.

Now play a little around with the mean and the sample mean with some simu-
lations.

Example 2.15 Simulate and estimate the mean

Carrying out the experiment more than one time an estimate of the mean, i.e. the
sample mean, can be calculated. Simulate rolling the fair dice

# Simulate a fair dice

# Number of realizations
n <- 30
# Simulate rolls with a fair dice
xFair <- sample(1:6, size=n, replace=TRUE)
# Calculate the sample mean
sum(xFair)/n

[1] 3.8

# or
mean(xFair)

[1] 3.8

Let us see what happens with the sample mean of the unfair dice by simulating the
same number of rolls
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# Simulate an unfair dice

# n realizations
xUnfair <- sample(1:6, size=n, replace=TRUE, prob=c(rep(1/7,5),2/7))
# Calculate the sample mean
mean(xUnfair)

[1] 3.7

Consider the mean of the unfair dice and compare it to the mean of the fair
dice (see Example 2.14). Is this in accordance with your simulation results?

Let us again turn to how much we can “see” from the simulations and the impact
of the number of realizations n on the estimation. In statistics the term information is
used to refer to how much information is embedded in the data, and therefore how
accurate different properties (parameters) can be estimated from the data.

Repeat the simulations several times with n = 30. By simply comparing the
sample means from a single simulation can it then be determined if the two
means really are different?

Repeat the simulations several times and increase n. What happens with to
the ’accuracy’ of the sample mean compared to the real mean? and thereby
how well it can be inferred if the sample means are different?

Does the information embedded in the data increase or decrease when n is
increased?

Variance and standard deviation

The second most used population parameter is the variance (or standard devia-
tion). It is a measure describing the spread of the distribution, more specifically
the spread away from the mean.
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Definition 2.16 Variance

The variance of a discrete random variable X is

σ2 = V(X) = E[(X− µ)2] =
∞

∑
i=1

(xi − µ)2 f (xi), (2-17)

where xi is the outcome value and f (xi) is the pdf of the ith outcome value.
The standard deviation σ is the square root of the variance.

The variance is the expected value (i.e. average (weighted by probabilities)) of
the squared distance between the outcome and the mean value.

Remark 2.17

Notice that the variance cannot be negative.

The standard deviation is measured on the same scale (same units) as the ran-
dom variable, which is not case for the variance. Therefore the standard de-
viation can much easier be interpreted, when communicating the spread of a
distribution.

Consider how the expected value is calculated in Equation (2-15). One
can think of the squared distance as a new random variable that has
an expected value which is the variance of X.

Example 2.18

The variance of rolls with the fair dice is

σ2
xfair = E[(Xfair − µXfair )2]

= (1− 3.5)2 1
6

+ (2− 3.5)2 1
6

+ (3− 3.5)2 1
6

+ (4− 3.5)2 1
6

+ (5− 3.5)2 1
6

+ (6− 3.5)2 1
6

= 70
24

≈ 2.92.

It was seen in Chapter 1, that after an experiment has been carried out n times
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the sample variance can be calculated as defined previously by

s2 = σ̂2 = 1
n− 1

n

∑
i=1

(xi − x̄)2, (2-18)

and hence thereby also sample standard deviation s.

Again our intuition tells us that the statistic (e.g. sample variance), should in
some sense converge to the true variance - this is indeed the case and the we
call the sample variance a central estimator for the true underlying variance.
This convergence will be quantified for a special case in Chapter 3.

The sample variance is calculated by:

• Take the sample mean: x̄

• Take the distance for each sample: xi − x̄

• Finally, take the average of the squared distances (using n− 1 in
the denominator, see Chapter 1)

Example 2.19 Simulate and estimate the variance

Return to the simulations. First calculate the sample variance from n rolls of a fair
dice

# Simulate a fair dice and calculate the sample variance

# Number of realizations
n <- 30
# Simulate
xFair <- sample(1:6, size=n, replace=TRUE)
# Calculate the distance for each sample to the sample mean
distances <- xFair - mean(xFair)
# Calculate the average of the squared distances
sum(distances^2)/(n-1)

[1] 3.316

# Or use the built in function
var(xFair)

[1] 3.316

Let us then try to play with variance in the dice example. Let us now consider a
four-sided dice. The pdf is
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x 1 2 3 4
FXfairFour(x) 1

4
1
4

1
4

1
4

Plot the pdf for both the six-sided dice and the four-sided dice

# Plot the pdf of the six-sided dice and the four-sided dice
plot(rep(1/6,6), type="h", col="red")
plot(rep(1/4,4), type="h", col="blue")
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# Calculate the means and variances of the dices

# The means
muXSixsided <- sum((1:6)*1/6) # Six-sided
muXFoursided <- sum((1:4)*1/4) # Four-sided
# The variances
sum((1:6-muXSixsided)^2*1/6)

[1] 2.917

sum((1:4-muXFoursided)^2*1/4)

[1] 1.25

Which dice outcome has the highest variance? is that as you had antici-
pated?
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2.3 Discrete distributions

In this section the discrete distributions included in the material are presented.
See the overview of all distributions in the collection of formulas Section A.2.1.

In R, implementations of many different distributions are available. For each
distribution at least the following is available

• The pdf is available by preceding with 'd', e.g. for the binomial distribu-
tion dbinom

• The cdf is available by preceding with 'p', e.g. pbinom

• The quantiles by preceding with 'q', e.g. qbinom

• Random number generation by preceding with 'r' e.g. rbinom

See for example the help with ?dbinom in R and see the names of all the R func-
tions in the overview A.2.1. They are demonstrated below in this section for the
discrete and later for the continuous distributions, see them demonstrated for
the normal distribution in Example 2.45.

2.3.1 Binomial distribution

The binomial distribution is a very important discrete distribution and appears
in many applications, it is presented in this section. In statistics it is typically
used for proportions as explained in Chapter 7.

If an experiment has two possible outcomes (e.g. failure or success, no or yes, 0
or 1) and is repeated more than one time, then the number of successes may be
binomial distributed. For example the number of heads obtained after a certain
number of flips with a coin. Each repetition must be independent. In relation to
random sampling this corresponds to successive draws with replacement (think
of drawing notes from a hat, where after each draw the note is put back again,
i.e. the drawn number is replaced again).
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Definition 2.20 Binomial distribution

Let the random variable X be binomial distributed

X ∼ B(n, p), (2-19)

where n is number of independent draws and p is the probability of a suc-
cess in each draw.
The binomial pdf describes probability of obtaining x successes

f (x; n, p) = P(X = x) =
(

n
x

)
px(1− p)n−x, (2-20)

where
(

n
x

)
= n!

x!(n− x)!
, (2-21)

is the number of distinct sets of x elements which can be chosen from a set
of n elements. Remember that n! = n · (n− 1) · . . . · 2 · 1.

Theorem 2.21 Mean and variance

The mean of a binomial distributed random variable is

µ = np, (2-22)

and the variance is

σ2 = np(1− p). (2-23)

Actually this can be proved by calculating the mean using Definition 2.13 and
the variance using Definition 2.16.
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Example 2.22 Simulation with a binomial distribution

The binomial distribution for 10 flips with a coin describe probabilities of getting x
heads (or equivalently tails)

# Simulate a binomial distributed experiment

# Number of flips
nFlips <- 10
# The possible outcomes are (0,1,...,nFlips)
xSeq <- 0:nFlips
# Use the dbinom() function which returns the pdf, see ?dbinom
pdfSeq <- dbinom(xSeq, size=nFlips, prob=1/2)
# Plot the density
plot(xSeq, pdfSeq, type="h")
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Example 2.23 Simulate 30 successive dice rolls

In the previous examples successive rolls of a dice was simulated. If a random vari-
able which counts the number of sixes obtained Xsix is defined, it follows a binomial
distribution

# Simulate 30 successive dice rolls
Xfair <- sample(1:6, size=30, replace=TRUE)
# Count the number sixes obtained
sum(Xfair==6)

[1] 8

# This is equivalent to
rbinom(1, size=30, prob=1/6)

[1] 7

2.3.2 Hypergeometric distribution

The hypergeometric distribution describes number of successes from successive
draws without replacement.
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Definition 2.24 Hypergeometric distribution

Let the random variable X be the number of successes in n draws without
replacement. Then X follows the hypergeometric distribution

X ∼ H(n, a, N), (2-24)

where a is the number of successes in the N elements large population. The
probability of obtaining x successes is described by the hypergeometric pdf

f (x; n, a, N) = P(X = x) =
(a

x)(
N−a
n−x)

(N
n )

. (2-25)

The notation
(

a
b

)
= a!

b!(a− b)!
, (2-26)

represents the number of distinct sets of b elements which can be chosen
from a set of a elements.

Theorem 2.25 Mean and variance

The mean of a hypergeometric distributed random variable is

µ = n
a
N

, (2-27)

and the variance is

σ2 = n
a(N − a)

N2
N − n
N − 1

. (2-28)

Example 2.26 Lottery probabilities using the hypergeometric dis-
tribution

A lottery drawing is a good example where the hypergeometric distribution can be
applied. The numbers from 1 to 90 are put in a bowl and randomly drawn without
replacement (i.e. without putting back the number when it has been drawn). Say
that you have the sheet with 8 numbers and want to calculate the probability of
getting all 8 numbers in 25 draws.
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# The probability of getting x numbers of the sheet in 25 drawings

# Number of successes in the population
a <- 8
# Size of the population
N <- 90
# Number of draws
n <- 25
# Plot the pdf, note: parameters names are different in the R function
plot(0:8, dhyper(x=0:8,m=a,n=N-a,k=n), type="h")
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2.3.3 Poisson distribution

The Poisson distribution describes the probability of a given number of events
occurring in a fixed interval if these events occur with a known average rate
and independently of the distance to the last event. Often it is events in a time
interval, but can as well be counts in other intervals, e.g. of distance, area or
volume. In statistics the Poisson distribution is usually applied for analyzing
for example counts of: arrivals, traffic, failures and breakdowns.
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Definition 2.27 Poisson distribution

Let the random variable X be Poisson distributed

X ∼ Po(λ), (2-29)

where λ is the rate (or intensity): the average number of events per interval.
The Poisson pdf describes the probability of x events in an interval

f (x; λ) = λx

x!
e−λ. (2-30)

Theorem 2.28 Mean and variance

A Poisson distributed random variable X has exactly the rate λ as the mean

µ = λ, (2-31)

and variance

σ2 = λ. (2-32)

Example 2.29

The Poisson distribution is typically used to describe phenomena such as:

• the number radioactive particle decays per time interval, i.e. the number of
clicks per time interval of a Geiger counter

• calls to a call center per time interval (λ does vary over the day)

• number of mutations in a given stretch of DNA after a certain amount of radi-
ation

• goals scored in a soccer match

One important feature is that the rate can be scaled, such that probabilities of
occurrences in other interval lengths can be calculated. Usually the rate is de-
noted with the interval length, for example the hourly rate is denoted as λhour
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and can be scaled to the minutely rate by

λminute = λhour

60
, (2-33)

such the probabilities of x events per minute can be calculated with the Poisson
pdf with rate λminute.

Example 2.30 Rate scaling

You are enjoying a soccer match. Assuming that the scoring of goals per match in
the league is Poisson distributed and on average 3.4 goals are scored per match.
Calculate the probability that no goals will be scored while you leave the match for
10 minutes.

Let λ90minutes = 3.4 be goals per match and scale this to the 10 minute rate by

λ10minutes = λ90minutes

9
= 3.4

9
. (2-34)

Let X be the number of goals in 10 minute intervals and use this to calculate the
probability of no events a 10 minute interval by

P(X = 0) = f (0, λ10minutes) ≈ 0.685, (2-35)

which was found with the R code

# Probability of no goals in 10 minutes

# The Poisson pdf
dpois(x=0, lambda=3.4/9)

[1] 0.6854
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Example 2.31 Poisson distributed random variable

Simulate a Poisson distributed random variable to see the Poisson distribution

# Simulate a Poisson random variable

# The mean rate of events per interval
lambda <- 4
# Number of realizations
n <- 1000
# Simulate
x <- rpois(n, lambda)
# Plot the empirical pdf
plot(table(x)/n)
# Add the pdf to the plot
lines(0:20, dpois(0:20,lambda), type="h", col="red")

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

0 1 2 3 4 5 6 7 8 9 10 11

Empirical pdf
pdf



Chapter 2 2.4 CONTINUOUS RANDOM VARIABLES 67

2.4 Continuous random variables

If an outcome of an experiment takes a continuous value, for example: a dis-
tance, a temperature, a weight, etc., then it is represented by a continuous ran-
dom variable.

Definition 2.32 Density and probabilities

The pdf of a continuous random variable X is a non-negative function for all
possible outcomes

f (x) ≥ 0 for all x, (2-36)

and has an area below the function of one
∫ ∞

−∞
f (x)dx = 1. (2-37)

It defines the probability of observing an outcome in the range from a to b
by

P(a < X ≤ b) =
∫ b

a
f (x)dx. (2-38)

For the discrete case the probability of observing an outcome x is equal to the
pdf of x, but this is not the case for a continuous random variable, where

P(X = x) = P(x < X ≤ x) =
∫ x

x
f (u)du = 0, (2-39)

i.e. the probability for a continuous random variable to be realized at a single
number P(X = x) is zero.

The plot in Figure 2.1 shows how the area below the pdf represents the proba-
bility of observing an outcome in a range. Note that the normal distribution is
used here for the examples, it is introduced in Section 2.5.2.
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Figure 2.1: The probability of observing the outcome of X in the range between
a and b is the area below the pdf spanning the range, as illustrated with the
coloured area.

Definition 2.33 Distribution

The cdf of a continuous variable is defined by

F(x) = P(X ≤ x) =
∫ x

−∞
f (u)du, (2-40)

and has the properties (in both the discrete and continuous case): the cdf is
non-decreasing and

lim
x→−∞

F(x) = 0 and lim
x→∞

F(x) = 1. (2-41)

The relation between the cdf and the pdf is

P(a < X ≤ b) = F(b)− F(a) =
∫ b

a
f (x)dx, (2-42)

as illustrated in Figures 2.1 and 2.2.

Also as the cdf is defined as the integral of the pdf, the pdf becomes the derivative
of the cdf

f (x) = d
dx

F(x) (2-43)
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Figure 2.2: The probability of observing the outcome of X in the range between
a and b is the distance between F(a) and F(b).

2.4.1 Mean and Variance

Definition 2.34 Mean and variance

For a continuous random variable the mean or expected value is

µ = E(X) =
∫ ∞

−∞
x f (x)dx, (2-44)

hence similar as for the discrete case the outcome is weighted with the pdf.
The variance is

σ2 = E[(X− µ)2] =
∫ ∞

−∞
(x− µ)2 f (x)dx, (2-45)

The differences between the discrete and the continuous case can be summed
up in two points:

• In the continuous case integrals are used, in the discrete case sums are
used.

• In the continuous case the probability of observing a single value is always
zero. In the discrete case it can be positive or zero.
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2.5 Continuous distributions

2.5.1 Uniform distribution

A random variable following the uniform distribution has equal density at any
value within a defined range.

Definition 2.35 Uniform distribution

Let X be a uniform distributed random variable

X ∼ U(α, β), (2-46)

where α and β defines the range of possible outcomes. It has the pdf

f (x) =
{

1
β−α for x ∈ [α, β]
0 otherwise

. (2-47)

The uniform cdf is

F(x) =





0 for x < α
x−α
β−α for x ∈ [α, β)
1 for x ≥ β

. (2-48)

In Figure 2.3 the uniform pdf and cdf are plotted.

Theorem 2.36 Mean and variance of the uniform distribution

The mean of a uniform distributed random variable X is

µ = 1
2

(α + β), (2-49)

and the variance is

σ2 = 1
12

(β− α)2. (2-50)
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Figure 2.3: The uniform distribution pdf and cdf.

2.5.2 Normal distribution

The most famous continuous distribution is the normal distribution for many
reasons. Often it is also called the Gaussian distribution. The normal distribu-
tion appears naturally for many phenomena and is therefore used in extremely
many applications, which will be apparent in later chapters of the book.

Definition 2.37 Normal distribution

Let X be a normal distributed random variable

X ∼ N(µ, σ2), (2-51)

where µ is the mean and σ2 is the variance (remember that the standard
deviation is σ). Note that the two parameters are actually the mean and
variance of X.
It follows the normal pdf

f (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 , (2-52)

and the normal cdf

F(x) = 1
σ
√

2π

∫ x

−∞
e−

(u−µ)2

2σ2 du. (2-53)
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Theorem 2.38 Mean and variance

The mean of a Normal distributed random variable is

µ, (2-54)

and the variance is

σ2. (2-55)

Hence simply the two parameters defining the distribution.

Example 2.39 The normal pdf

Example: Let us play with the normal pdf

# Play with the normal distribution

# The mean and standard deviation
muX <- 0
sigmaX <- 1
# A sequence of x values
xSeq <- seq(-6, 6, by=0.1)
##
pdfX <- 1/(sigmaX*sqrt(2*pi)) * exp(-(xSeq-muX)^2/(2*sigmaX^2))
# Plot the pdf
plot(xSeq, pdfX, type="l", xlab="$x$", ylab="f(x)")
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Try with different values of the mean and standard deviation. Describe how
this change the position and spread of the pdf?

Theorem 2.40 Linear combinations of normal random variables

Let X1, . . . , Xn be independent normal random variables, then any linear
combination of X1, . . . , Xn will follow a normal distribution, with mean and
variance given in Theorem 2.56.

Use the mean and variance identities introduced in Section 2.7 to find the mean
and variance of the linear combination as exemplified here:

Example 2.41

Consider two normal distributed random variables

X1 ∼ N(µX1 , σ2
X1

) and X2 ∼ N(µX2 , σ2
X2

). (2-56)

The difference

Y = X1 − X2, (2-57)

is normal distributed

Y ∼ N(µY, σ2
Y), (2-58)

where the mean is

µY = µX1 − µX2 , (2-59)

and

σ2
Y = σ2

X1
+ σ2

X2
, (2-60)

where the mean and variance identities introduced in Section 2.7 have been used.

Standard normal distribution
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Definition 2.42 Standard normal distribution

The standard normal distribution is the normal distribution with zero mean
and unit variance

Z ∼ N(0, 1), (2-61)

where Z is the standardized normal random variable.

Historically before the widespread use of computers the standardized random
variables were used a lot, since it was not possible to easily evaluate the pdf and
cdf, instead they were looked up in tables for the standardized distributions.
This was smart since transformation into standardized distributions requires
only a few simple operations.

Theorem 2.43 Transformation to the standardized normal random
variable

A normal distributed random variable X can be transformed into a stan-
dardized normal random variable by

Z = X− µ

σ
. (2-62)

Example 2.44 Quantiles in the standard normal distribution

The most used quantiles (or percentiles) in the standard normal distribution are

Percentile 1% 2.5% 5% 25% 75% 95% 97.5% 99%
Quantile 0.01 0.025 0.05 0.25 0.75 0.95 0.975 0.99
Value -2.33 -1.96 -1.64 -0.67 0.67 1.64 1.96 2.33

Note that the values can be considered as standard deviations (i.e. for Z the stan-
dardized normal then σZ = 1), which holds for any normal distribution.

The most used quantiles are marked on the plot
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Note that the units on the x-axis is in standard deviations.

Normal pdf details

In order to get insight into how the normal distribution is formed consider the
following steps. In Figure 2.4 the result of each step is plotted:

1. Take the distance to the mean: x− µ

2. Square the distance: (x− µ)2

3. Make it negative and scale it: −(x−µ)2

(2σ2)

4. Take the exponential: e
−(x−µ)2

(2σ2)

5. Finally, scale it to have an area of one: 1
σ
√

2π
e
−(x−µ)2

(2σ2)
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Figure 2.4: The steps involved in calculating the normal distribution pdf.

Example 2.45 R functions for the normal distribution

In R functions to generate values from many distributions are implemented. For the
normal distribution the following functions are available:
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# Do it for a sequence of x values
xSeq <- c(-3,-2,1,0,1,2,3)
# The pdf
dnorm(xSeq, mean=0, sd=1)

[1] 0.004432 0.053991 0.241971 0.398942 0.241971 0.053991 0.004432

# The cdf
pnorm(xSeq, mean=0, sd=1)

[1] 0.00135 0.02275 0.84134 0.50000 0.84134 0.97725 0.99865

# The quantiles
qnorm(c(0.01,0.025,0.05,0.5,0.95,0.975,0.99), mean=0, sd=1)

[1] -2.326 -1.960 -1.645 0.000 1.645 1.960 2.326

# Generate random normal distributed realizations
rnorm(n=10, mean=0, sd=1)

[1] 0.7859 -0.7339 -0.4250 0.9429 0.1238 0.8251 1.4352 2.0590
[9] -1.6450 0.2401

# Calculate the probability that the outcome of X is between a and b
a <- 0.2
b <- 0.8
pnorm(b) - pnorm(a)

[1] 0.2089

# See more details by running "?dnorm"

Use the functions to make a plot of the normal pdf with marks of the
2.5%, 5%, 95%, 97.5% quantiles.

Make a plot of the normal pdf and a histogram (empirical pdf) of 100 simu-
lated realizations.
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2.5.3 Log-Normal distribution

If a random variable is log-normal distributed then its logarithm is normally
distributed.

Definition 2.46 Log-Normal distribution

A log-normal distributed random variable

X ∼ LN(α, β2), (2-63)

where α is the mean and β2 is the variance of the normal distribution ob-
tained when taking the natural logarithm to X.
The log-normal pdf is

f (x) = 1
x
√

2πβ
e
− (ln x−α)2

2β2 . (2-64)

Theorem 2.47 Mean and variance of log-normal distribution

Mean of the log-normal distribution

µ = eα+β2/2, (2-65)

and variance

σ2 = e2α+β2(eβ2 − 1). (2-66)

The log-normal distribution occurs in many fields, in particular: biology, fi-
nance and many technical applications.

2.5.4 Exponential distribution

The usual application of the exponential distribution is for describing the length
(usually time) between events which, when counted, follows a Poisson distri-
bution, see Section 2.3.3. Hence the length between events which occur contin-
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uously and independently at a constant average rate.

Definition 2.48 Exponential distribution

Let X be an exponential distributed random variable

X ∼ Exp(λ), (2-67)

where λ is the average rate of events.

It follows the exponential pdf

f (x) =
{

λe−λx for x ≥ 0
0 for x < 0

. (2-68)

Theorem 2.49 Mean and variance of exponential distribution

Mean of an exponential distribution is

µ = 1
λ

, (2-69)

and the variance is

σ2 = 1
λ2 . (2-70)
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Example 2.50 Exponential distributed time intervals

Simulate a so-called Poisson process, which has exponential distributed time inter-
val between events

# Simulate exponential waiting times

# The rate parameter: events per time
lambda <- 4
# Number of realizations
n <- 1000
# Simulate
x <- rexp(n, lambda)
# The empirical pdf
hist(x, probability=TRUE)
# Add the pdf to the plot
curve(dexp(xseq,lambda), xname="xseq", add=TRUE, col="red")
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Furthermore check that by counting the events in fixed length intervals that they
follow a Poisson distribution.
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# Check the relation to the Poisson distribution
# by counting the events in each interval

# Sum up to get the running time
xCum <- cumsum(x)
# Use the hist function to count in intervals between the breaks,
# here 0,1,2,...
tmp <- hist(xCum, breaks=0:ceiling(max(xCum)))
# Plot the discrete empirical pdf
plot(table(tmp$counts)/length(tmp$counts))
# Add the Poisson pdf to the plot
lines(0:20, dpois(0:20,lambda), type="h", col="red")
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Figure 2.5: Exponential distributed time intervals between events forms a so-
called Poisson process.

2.6 Simulation of random variables

The basic concept of simulation was introduced in Section 2.2.1 and we have al-
ready applied the in-built functions in R for generating random numbers from
any implemented distribution, see how in Section 2.3.1. In this section it is ex-
plained how realizations of a random variable can be generated from any prob-
ability distribution – it is the same technique for both discrete and continuous
distributions.

Basically, a computer obviously cannot create a result/number, which is ran-
dom. A computer can give an output as a function of an input. (Pseudo) ran-
dom numbers from a computer are generated from a specially designed algo-
rithm - called a random number generator, which once started can make the
number xi+1 from the number xi. The algorithm is designed in such a way that
when looking at a sequence of these values, in practice one cannot tell the dif-
ference between them and a sequence of real random numbers. The algorithm
needs a start input, called the “seed”, as explained above Remark 2.12. Usually,
you can manage just fine without having to worry about the seed issue since
the program itself finds out how to handle it appropriately. Only if you want
to be able to recreate exactly the same results you need to set seed value. For
details about this and the random number generators used in R, type ?Random.

Actually, a basic random number generator typically generates (pseudo) ran-
dom numbers between 0 and 1 in the sense that numbers in practice follow the
uniform distribution on the interval 0 to 1, see Section 2.35. Actually, there is a
simple way how to come from the uniform distribution to any kind of distribu-
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tion:

Theorem 2.51

If U ∼ Uniform(0, 1) and F is a distribution function for any probability
distribution, then F−1(U) follow the distribution given by F

Recall, that the distribution function F in R is given by the p versions of the
distributions, while F−1 is given by the q versions.

Example 2.52 Random numbers in R

We can generate 100 normally distributed N(2, 32) numbers similarly the following
two ways:

# Generate 100 normal distributed values
rnorm(100, mean=2, sd=3)
# Similarly, generate 100 uniform distributed values from 0 to 1 and
# put them through the inverse normal cdf
qnorm(runif(100), mean=2, sd=3)

Example 2.53 Simulating the exponential distribution

Consider the exponential distribution with λ = 1/β = 1/2, that is, with density
function

f (x) = λe−λx,

for x > 0 and 0 otherwise. The distribution function is

F(x) =
∫ x

0
f (t)dt = 1− e−0.5x.

The inverse of this distribution function can be found by solving

u = 1− e−0.5x ⇔ x = −2 log(1− u).

So if random numbers U ∼ Uniform(0, 1) then −2 log(1−U) follows the exponen-
tial distribution with λ = 1/2 (and β = 2). We confirm this in R here:
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# Three equivalent ways of simulating the exponential distribution
# with lambda=1/2
re1 <- -2*log(1-runif(10000))

re2 <- qexp(runif(10000), 1/2)

re3 <- rexp(10000, 1/2)

# Check the means and variances of each
c(mean(re1), mean(re2), mean(re3))

[1] 2.029 1.966 1.976

c(var(re1), var(re2), var(re3))

[1] 4.114 3.941 3.898

This can be illustrated by plotting the distribution function (cdf) for the exponential
distribution with λ = 1/2 and 5 random outcomes
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But since R has already done all this for us, we do not really need this as long as
we only use distributions that have already been implemented in R. One can use
the help function for each function, for example. ?rnorm, to check exactly how
to specify the parameters of the individual distributions. The syntax follows
exactly what is used in p, d and q versions of the distributions.
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2.7 Identities for the mean and variance

Rules for calculation of the mean and variance of linear combinations of in-
dependent random variables are introduced here. They are valid for both the
discrete and continuous case.

Theorem 2.54 Mean and variance of linear functions

Let Y = aX + b then

E(Y) = E(aX + b) = a E(X) + b, (2-71)

and

V(Y) = V(aX + b) = a2 V(X). (2-72)

Random variables are often scaled (i.e. aX) for example when shifting units:

Example 2.55

The mean of a bike shops sale is 100 bikes per month and varies with a standard
deviation of 15. They earn 200 Euros per bike. What is the mean and standard
deviation of their earnings per month?

Let X be the number of bikes sold per month. On average they sell µX = 100 bikes
per month and it varies with a variance of σ2

X = 225. The shops monthly earnings

Y = 200X,

has then a mean and standard deviation of

µY = E(Y) = E(200X) = 200 E(X) = 200 · 100 = 20000 Euro/month,

σY =
√

V(Y) =
√

V(200X) =
√

2002 V(X) =
√

40000 · 225 = 3000 Euro/month.
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Theorem 2.56 Mean and variance of linear combinations

The mean of a linear combination of independent random variables is

E(a1X1 + a2X2 + · · ·+ anXn) = a1 E(X1) + a2 E(X2) + · · ·+ an E(Xn),
(2-73)

and the variance

V(a1X1 + a2X2 + · · ·+ anXn) = a2
1 V(X1) + a2

2 V(X2) + · · ·+ a2
n V(Xn).

(2-74)

Example 2.57

Lets take a dice example to emphasize an important point. Let Xi represent the
outcome of a roll with a dice with mean µX and standard deviation σX.

Now, consider a scaling of a single roll with a dice, say five times

Yscale = 5X1,

then the mean will scale linearly

E(Yscale) = E(5X1) = 5 E(X1) = 5 µX,

and the standard deviation also scales linearly

σ2
Yscale = V(5X1) = 52 V(X1) = 52 σ2

X ⇔ σYscale = 5 σX.

Whereas for a sum of five rolls

Ysum = X1 + X2 + X3 + X4 + X5,

the mean will similarly scale linearly

E(Ysum) = E(X1 + X2 + X3 + X4 + X5)
= E(X1) + E(X2) + E(X3) + E(X4) + E(X5)
= 5 µX,

however the standard deviation will increase only with the square root

σ2
Ysum = V(X1 + X2 + X3 + X4 + X5)

= V(X1) + V(X2) + V(X3) + V(X4) + V(X5)
= 5 σ2

X ⇔
σYsum =

√
5 σX.
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This is simply because when applying the sum to many random outcomes, then
the high and low outcomes will even out each other, such that the variance will be
smaller for a sum than for a scaling.
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2.8 Covariance and correlation

In this chapter we have discussed mean and variance (or standard deviation),
and the relation to the sample mean and sample variance, see Section 2.2.2. In
Chapter 1 Section 1.4.3 we discussed the sample covariance and sample correla-
tion, these two measures also have theoretical justification, namely covariance
and correlation, which we will discuss in this section. We start by the definition
of covariance.

Definition 2.58 Covariance

Let X and Y be two random variables, then the covariance between X and
Y, is

Cov(X, Y) = E[(X− E[X])(Y− E[Y])] . (2-75)

Remark 2.59

It follows immediately from the definition that Cov(X, X) = V(X) and
Cov(X, Y) = Cov(Y, X).

An important concept in statistics is independence (see Section 2.9 for a formal
definition). We often assume that realizations (random variables) are indepen-
dent. If two random variables are independent then their covariance will be
zero, the reverse is however not necessarily true (see also the discussion on
sample correlation in Section 1.4.3).

The following calculation rule apply to covariance between two random vari-
ables X and Y:

Theorem 2.60 Covariance between linear combinations

Let X and Y be two random variables, then

Cov(a0 + a1X + a2Y, b0 + b1X + b2Y) = a1b1 V(X) + a2b2 V(Y) + (a1b2 + a2b1) Cov(X, Y).
(2-76)
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Proof

Let Z1 = a0 + a1X + a2Y and Z2 = b0 + b1X + b2Y then

Cov(Z1, Z2) = E[(a1(X− E[X]) + a2(Y− E[Y]))(b1(X− E[X]) + b2(Y− E[Y]))]
= E[a1(X− E[X])b1(X− E[X])] + E[a1(X− E[X])b2(Y− E[Y])]+

E[a2(Y− E[Y])b1(X− E[X])] + E[a2(Y− E[Y])b2(Y− E[Y])]
= a1b1 V(X) + a2b2 V(Y) + (a1b2 + a2b2) Cov(X, Y). (2-77)

�

Example 2.61

Let X ∼ N(3, 22) and Y ∼ N(2, 1) and the covariance between X and Y given by
Cov(X, Y) = 1. What is the variance of the random variable Z = 2X−Y?

V(Z) = Cov[2X−Y, 2X−Y] = 22 V(X) + V(Y)− 4 Cov(X, Y)
= 2222 + 1− 4 = 13.

We have already seen in Section 1.4.3 that the sample correlation measures the
observed degree of linear dependence between two random variables – calcu-
lated from samples observed on the same observational unit e.g. height and
weight of people. The theoretical counterpart is the correlation between two
random variables – the true linear dependence between the two variables:

Definition 2.62 Correlation

Let X and Y be two random variables with V(X) = σ2
x , V(Y) = σ2

y , and
Cov(X, Y) = σxy, then the correlation between X and Y is

ρxy =
σxy

σxσy
. (2-78)

Remark 2.63

The correlation is a number between -1 and 1.
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Example 2.64

Let X ∼ N(1, 22) and ε ∼ N(0, 0.52) be independent random variables, find the
correlation between X and Z = X + ε.

The variance of Z is

V(Z) = V(X + ε) = V(X) + V(ε) = 4 + 0.25 = 4.25.

The covariance between X and Z is

Cov(X, Z) = Cov(X, X + ε) = V(X) = 4,

and hence

ρxz = 4√
4.25 · 4

= 0.97.
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2.9 Independence of random variables

In statistics the concept of independence is very important, and in order to
give a formal definition of independence we will need the definition of two-
dimensional random variables. The probability density function of a two-dimensional
discrete random variable, called the joint probability density function, is,

Definition 2.65 Joint pdf of two-dimensional discrete random vari-
ables

The pdf of a two-dimensional discrete random variable [X, Y] is

f (x, y) = P(X = x, Y = y), (2-79)

with the properties

f (x, y) ≥ 0 for all (x, y), (2-80)

∑
all x

∑
all y

f (x, y) = 1. (2-81)

Remark 2.66

P(X = x, Y = y) should be read: the probability of X = x and Y = y.

Example 2.67

Imagine two throws with an fair coin: the possible outcome of each throw is either
head or tail, which will be given the values 0 and 1 respectively. The complete set of
outcomes is (0,0), (0,1), (1,0), and (1,1) each with probability 1/4. And hence the pdf
is

f (x, y) = 1
4

; x = {0, 1}, y = {0, 1},
further we see that

1

∑
x=0

1

∑
y=0

f (x, y) =
1

∑
x=0

( f (x, 0) + f (x, 1)) = f (0, 0) + f (0, 1) + f (1, 0) + f (1, 1)

= 1.
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The formal definition of independence for a two dimensional discrete random
variable is:

Definition 2.68 Independence of discrete random variables

Two discrete random variables X and Y are said to be independent if and
only if

P(X = x, Y = y) = P(X = x)P(Y = y). (2-82)

Example 2.69

Example 2.67 is an example of two independent random variables, to see this write
the probabilities

P(X = 0) =
1

∑
y=0

f (0, y) = 1
2

,

P(X = 1) =
1

∑
y=0

f (1, y) = 1
2

.

similarly P(Y = 0) = 1
2 and P(Y = 1) = 1

2 , now we see that P(X = x)P(Y = y) = 1
4

for all possible x and y, and hence

P(X = x)P(Y = y) = P(X = x, Y = y) = 1
4

.

Example 2.70

Now imagine that for the second throw we don’t see the outcome of Y, but only
observe the sum of X and Y, denote it by

Z = X + Y.

Lets find out if X and Z are independent. In this case the for all outcomes (0, 0),
(0, 1), (1, 1), (1, 2) the joint pdf is

P(X = 0, Z = 0) = P(X = 0, Z = 1) = P(X = 1, Z = 1) = P(X = 1, Z = 2) = 1
4

.

The pdf for each variable is: for X

P(X = 0) = P(X = 1) = 1
2

,
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and for Z

P(Z = 0) = P(Z = 2) = 1
4

and P(Z = 1) = 1
2

,

thus for example for the particular outcome (0, 0)

P(X = 0)P(Z = 0) = 1
2
· 1

4
= 1

8
6= 1

4
= P(X = 0, Z = 0),

the pdf s are not equal and hence we see that X and Z are not independent.

Remark 2.71

In the example above it is quite clear that X and Z cannot be independent.
In real applications we do not know exactly how the outcomes are realized
and therefore we will need to assume independence (or test it).

To be able to define independence of continuous random variables, we will need
the pdf of a two-dimensional random variable:

Definition 2.72 Pdf of two dimensional continous random vari-
ables

The pdf of a two-dimensional continous random variable [X, Y] is a function
f (x, y) from R2 into R+ with the properties

f (x, y) ≥ 0 for all (x, y), (2-83)
∫ ∫

f (x, y)dxdy = 1. (2-84)

Just as for one-dimensional random variables the probability interpretation is
in form of integrals

P
(
(X, Y) ∈ A

)
=
∫

A
f (x, y)dxdy, (2-85)

where A is an area.



Chapter 2 2.9 INDEPENDENCE OF RANDOM VARIABLES 94

Example 2.73 Bivariate normal distribution

The most important two-dimensional distribution is the bivariate normal distribu-
tion

f (x1, x2) = 1
2π
√
|Σ|

e−
1
2 (x−µ)TΣ−1(x−µ)

= 1

2π
√

σ11σ22 − σ2
12

e
− σ22(x1−µ1)2+σ11(x2−µ2)2−2σ12(x1−µ1)(x2−µ2)

2(σ11σ22−σ2
12) ,

where x = (x1, x2), and µ = [E(X1), E(X2)], and Σ is the so-called variance-
covariance matrix with elements (Σ)ij = σij = Cov(Xi, Xj), note that σ12 = σ21,
| · | is the determinant, and Σ−1 is the inverse of Σ.

Definition 2.74 Independence of continous random variables

Two continous random variables X and Y are said to be independent if

f (x, y) = f (x) f (y). (2-86)

We list here some properties of independent random variables.

Theorem 2.75 Properties of independent random variables

If X and Y are independent then

E(XY) = E(X) E(Y), (2-87)

and

Cov(X, Y) = 0. (2-88)

Let X1, . . . , Xn be independent and identically distributed random variables
then

Cov(X, Xi − X) = 0. (2-89)
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Proof

E(XY) =
∫ ∫

xy f (x, y)dxdy =
∫ ∫

xy f (x) f (y)dxdy

=
∫

x f (x)dx
∫

y f (y)dy = E(X) E(Y)
(2-90)

Cov(X, Y) = E[(X− E(X))(Y− E(Y))]
= E[XY]− E[E(X)Y]− E[X E(Y)] + E(X) E(Y)
= 0.

(2-91)

Cov(X, Xi − X) = Cov(X, Xi)−Cov(X, X)

= 1
n

σ2 − 1
n2 Cov

(
∑ Xi, ∑ Xi

)

= 1
n

σ2 − 1
n2 nσ2 = 0.

(2-92)

�

Remark 2.76

Note that Cov(X, Y) = 0 does not imply that X and Y are independent.
However, if X and Y follow a bivariate normal distribution, then if X and Y
are uncorrelated then they are also independent.
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2.10 Functions of normal random variables

This section will cover some important functions of a normal random variable.
In general the question of how an arbitrary function of a random variable is dis-
tributed cannot be answered on closed form (ı.e. directly and exactly calculated)
– for answering such questions we must use simulation as a tool, as covered de-
tails in Chapter 4. We have already discussed simulation as a learning tool,
which will also be used in this section.

The simplest function we can think of is a linear combination of normal random
variables, which we from Theorem 2.40 know will follow a normal distribution.
The mean and variance of this normal distribution can be calculated using the
identities given in Theorem 2.56.

Remark 2.77

Note that combining Theorems 2.40 and 2.75, and Remark 2.76 imply that X
and Xi − X are independent.

In addition to the result given above we will cover three additional distribu-
tions: χ2-distribution, t-distribution and the F-distribution, which are all very
important for the statistical inference covered in the following chapters.
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2.10.1 The χ2-distribution

The χ2-distribution (chi-square) is defined by:

Definition 2.78

Let X be χ2 distributed, then its pdf is

f (x) = 1
2

ν
2 Γ
(

ν
2

) x
ν
2−1e−

x
2 ; x ≥ 0, (2-93)

where Γ
(

ν
2

)
is the Γ-function and ν is the degrees of freedom.

An alternative definition (here formulated as a theorem) of the χ2-distribution
is:

Theorem 2.79

Let Z1, . . . , Zν be independent random variables following the standard nor-
mal distribution, then

ν

∑
i=1

Z2
i ∼ χ2(ν). (2-94)

We will omit the proof of the theorem as it requires more probabilty calculus
than covered here. Rather a small example that illustrates how the theorem can
be checked by simulation:
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Example 2.80 simulation of χ2-distribution

# Simulate 10 realizations from a standard normal distributed variable
n <- 10
rnorm(n)
# Now repeat this 200 times and calculate the sum of squares each time
# Note: the use of the function replicate: it repeats the
# expression in the 2nd argument k times, see ?replicate
k <- 200
x <- replicate(k, sum(rnorm(n)^2))
# Plot the epdf of the sums and compare to the theoretical chisquare pdf
par(mfrow=c(1,2))
hist(x, freq=FALSE)
curve(dchisq(xseq,df=n), xname="xseq", add=TRUE, col="red")
# and the ecdf compared to the cdf
plot(ecdf(x))
curve(pchisq(xseq,df=n), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.
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Theorem 2.81

Given a sample of size n from the normal distributed random variables Xi
with variance σ2, then the sample variance S2 (viewed as random variable)
can be transformed into

χ2 = (n− 1)S2

σ2 , (2-95)

which follows the χ2-distribution with degrees of freedom ν = n− 1.

Proof

Start by rewriting the expression

(n− 1)S2

σ2 =
n

∑
i=1

(
Xi − X

σ

)2

=
n

∑
i=1

(
Xi − µ + µ− X

σ

)2

=
n

∑
i=1

(
Xi − µ

σ

)2

+
n

∑
i=1

(
X− µ

σ

)2

− 2
n

∑
i=1

(X− µ)(Xi − µ)
σ2

=
n

∑
i=1

(
Xi − µ

σ

)2

+ n
(

X− µ

σ

)2

− 2n
(

X− µ

σ

)2

=
n

∑
i=1

(
Xi − µ

σ

)2

−
(

X− µ

σ/
√

n

)2

,

(2-96)

we know that Xi−µ
σ ∼ N(0, 1) and X−µ

σ/
√

n ∼ N(0, 1), and hence the left hand side is a

χ2(n) distributed random variable minus a χ2(1) distributed random variable (also
X and S2 are independent, see Theorems 2.75, and 2.40, and Remark 2.76). Hence
the left hand side must be χ2(n− 1).

�

If someone claims that a sample comes from a specific normal distribution (i.e.
Xi ∼ N(µ, σ2), then we can examine probabilities of specific outcomes of the
sample variance. Such calculation will be termed hypethesis test in later chap-
ters.
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Example 2.82 Milk dose machines

A manufacture of machines for dosing milk claims that their machines can dose with
a precision defined by the normal distribution with a standard deviation less than
2% of the dose volume in the operation range. A sample of n = 20 observations was
taken to check if the precision was as claimed. The sample standard deviation was
calculated to s = 0.03.

Hence the claim is that σ ≤ 0.02, thus we want to answer the question: if σ = 0.02
(i.e. the upper limit of the claim), what is then the probability of getting the sampling
deviation s ≥ 0.03?

# Chi-square milk dosing precision

# The sample size
n <- 20
# The claimed deviation
sigma <- 0.02
# The observed sample standard deviation
s <- 0.03
# Calculate the chi-square statistic
chiSq <- (n-1)*s^2 / sigma^2
# Use the cdf to calculate the probability of getting the observed
# sample standard deviation or higher
1 - pchisq(chiSq, df=n-1)

[1] 0.001402

It seems very unlikely that the standard deviation is below 0.02 since the probability
of obtaining the observed sample standard deviation under this condition is very
small. The probability we just found will be termed a p-value in later chapters - the
p-value a very fundamental in testing of hypothesis.

The probability calculated in the above example will be called the p-value in
later chapters and it is a very fundamental concept in statistics.

Theorem 2.83 Mean and variance

Let X ∼ χ2(ν) then the mean and variance of X is

E(X) = ν; V(X) = 2ν. (2-97)
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We will omit the proof of this theorem, but it is easily checked by a symbolic
calculation software (like e.g. Maple).

Example 2.84

We want to calculate the expected value of the sample variance (S2) based on n
observations with Xi ∼ N(µ, σ2). We have already seen that n−1

σ2 S2 ∼ χ2(n− 1) and
we can therefore write

E(S2) = σ2

n− 1
n− 1

σ2 E
(
S2)

= σ2

n− 1
E
(

n− 1
σ2 S2

)

= σ2

n− 1
(n− 1) = σ2,

and we say that S2 is a central estimator for σ2 (the term estimator is introduced in
Section 3.1.3). We can also find the variance of the estimator

V(S2) =
(

σ2

n− 1

)2

V
(

n− 1
σ2 S2

)

= σ4

(n− 1)2 2(n− 1) = 2
σ4

n− 1
.

Example 2.85 Pooled variance

Suppose now that we have two different samples (not yet realized) X1, . . . , Xn1 and
Y1, . . . , Yn2 with Xi ∼ N(µ1, σ2) and Yi ∼ N(µ2, σ2) (both i.i.d.). Let S2

1 be the sample
variance based on the X’s and S2

2 be the sample variance based on the Y’s. Now both
S2

1 and S2
2 will be central estimators for σ2, and so will any weighted average of the

type

S2 = aS2
1 + (1− a)S2

2; a ∈ [0, 1].

Now we would like to choose a such that the variance of S2 is as small as possible,
and hence we calculate the variance of S2

V(S2) = a22
σ4

n1 − 1
+ (1− a)22

σ4

n2 − 1

= 2σ4
(

a2 1
n1 − 1

+ (1− a)2 1
n2 − 1

)
.
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In order to find the minimum we differentiate with respect to a

∂ V(S2)
∂a

= 2σ4
(

2a
1

n1 − 1
− 2(1− a) 1

n2 − 1

)

= 4σ4
(

a
(

1
n1 − 1

+ 1
n2 − 1

)
− 1

n2 − 1

)

= 4σ4
(

a
n1 + n2 − 2

(n1 − 1)(n2 − 1) −
1

n2 − 1

)
,

which is zero for

a = n1 − 1
n1 + n2 − 2

.

In later chapters we will refer to this choice of a as the pooled variance (S2
p), inserting

in (2-98) gives

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

Note that S2
p is a weighted (proportional to the number of observations) average

of the sample variances. It can also be shown (you are invited to do this) that
n1+n2−2

σ2 S2
p ∼ χ2(n1 + n2 − 2). Further, note that the assumption of equal variance in

the two samples is crucial in the calculations above.

2.10.2 The t-distribution

The t-distribution is the sampling distribution of the sample mean standardized
with the sample variation. It is valid for all sample sizes, however for larger
sample sizes (n > 30) the difference between the t-distribution and the normal
distribution is very small. Hence for larger sample sizes the normal distribution
is often applied.

Definition 2.86

The t-distribution pdf is

fT(t) = Γ( ν+1
2 )√

νπ Γ( ν
2 )
(

1 + t2

ν

)− ν+1
2 , (2-98)

where ν is the degrees of freedom and Γ() is the Gamma function.
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The relation between normal random variables and χ2-distributed random vari-
ables are given in the following theo:rem

Theorem 2.87

Let Z ∼ N(0, 1) and Y ∼ χ2(ν), then

X = Z√
Y/ν

∼ t(ν). (2-99)

We will not prove this theorem, but show by an example how this can be illus-
trated by simulation:

Example 2.88 Relation between normal and χ2

# Set simulate parameters
nu <- 8; k <- 200
# Generate the simulated realizations
z <- rnorm(k)
y <- rchisq(k, df=nu)
x <- z/sqrt(y/nu)
# Plot
par(mfrow=c(1,2))
hist(x, freq = FALSE)
curve(dt(xseq, df = nu), xname="xseq", add=TRUE, col="red")
plot(ecdf(x))
curve(pt(xseq, df = nu), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

The t-distribution arises when a sample is taken of a normal distributed random
variable, then the sample mean standardized with the sample variance follows
the t-distribution.

Theorem 2.89

Given a sample of normal distributed random variables X1, . . . , Xn, then the
random variable

T = X− µ

S/
√

n
∼ t(n− 1), (2-100)

follows the t-distribution, where X is the sample mean, µ is the mean of X,
n is the sample size and S is the sample standard deviation.

Proof

Note that X−µ

σ/
√

n ∼ N(0, 1) and (n−1)S2

σ2 ∼ χ2(n− 1) which inserted in Equation (2.87)
gives

T =
X−µ

σ/
√

n√
(n−1)S2

σ2(n−1)

=
X−µ

1/
√

n√
S2

= X− µ

S/
√

n
∼ t(n− 1).

(2-101)

�

We could also verify this by simulation:
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Example 2.90 Simulation of t-distribution

# Simulate
n <- 8; k <- 200; mu <- 1; sigma <- 2
# Repeat k times the simulation of a normal dist. sample:
# return the values in a (n x k) matrix
x <- replicate(k, rnorm(n, mean=mu, sd=sigma))
xbar <- apply(x, 2, mean)
s <- apply(x, 2, sd)
tobs <- (xbar - mu)/(s/sqrt(n))
# Plot
par(mfrow=c(1,2))
hist(tobs, freq = FALSE)
curve(dt(xseq, df=n-1), xname="xseq", add=TRUE, col="red")
plot(ecdf(tobs))
curve(pt(xseq, df=n-1), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

Note that X and S are random variables, since they are the sample mean and
standard deviation of a sample consisting of realizations of X, but the sample is
not taken yet.

Very often samples with only few observations are available. In this case by
assuming normality of the population (i.e. the Xi’s are normal distributed) and
for a some mean µ, the t-distribution can be used to calculate the probability of
obtaining the sample mean in a given range.
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Example 2.91 Electric car driving distance

An electric car manufacture claims that their cars can drive on average 400 km on
a full charge at a specified speed. From experience it is known that this full charge
distance, denote it by X, is normal distributed. A test of n = 10 cars was carried out,
which resulted in a sample mean of x̄ = 382 km and a sample deviation of s = 14.

Now we can use the t-distribution to calculate the probability of obtaining this value
of the sample mean or lower, if their claim about the mean is actually true:

# Calculate the probability of getting the sample mean under the
# conditions that the claim is actually the real mean

# A test of 10 cars was carried out
n <- 10
# The claim is that the real mean is 400 km
muX <- 400
# From the sample the sample mean was calculated to
xMean <- 393
# And the sample deviation was
xSD <- 14
# Use the cdf to calculate the probability of obtaining this
# sample mean or a lower value
pt( (xMean-muX) / (xSD/sqrt(n)), df=n-1)

[1] 0.07415

If we had the same sample mean and sample deviation, how do you think
changing the number of observations will affect the calculated probability?
Try it out.

The t-distribution converges to the normal distribution as the simple size in-
creases. For small sample sizes it has a higher spread than the normal distribu-
tion. For larger sample sizes with n > 30 observations the difference between
the normal and the t-distribution is very small.



Chapter 2 2.10 FUNCTIONS OF NORMAL RANDOM VARIABLES 107

Example 2.92 t-distribution

Generate plots to see how the t-distribution is shaped compared to the normal dis-
tribution.

# Plot the t-distribution for different sample sizes

# First plot the standard normal distribution
curve(dnorm(x), xlim=c(-5,5), xlab="x", ylab="Density")
# Add the t-distribution for 30 observations
curve(dt(x,df=30-1), add=TRUE, col=2)
# Add the t-distribution for 15, 5 and 2 observations
curve(dt(x,df=15-1), add=TRUE, col=3)
curve(dt(x,df=5-1), add=TRUE, col=4)
curve(dt(x,df=2-1), add=TRUE, col=5)
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How does the number of observations affect the shape of the t-distribution
pdf compared to the normal pdf?
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Theorem 2.93 Mean and variance

Let X ∼ t(ν) then the mean and variance of X is

E(X) = 0; ν > 1, (2-102)

V(X) = ν

ν− 2
; ν > 2. (2-103)

We will omit the proof of this theorem, but it is easily checked with a symbolic
calculation software (like e.g. Maple).

Remark 2.94

For ν ≤ 1 the expectation (and hence the variance) is not defined (the inte-
gral is not absolutely convergent), and for ν ∈ (1, 2] (1 < ν ≤ 2) the variance
is equal ∞. Note that this does not violate the general definition of probabil-
ity density functions.

2.10.3 The F-distribution

The F-distribution is defined by:

Definition 2.95

The F-distribution pdf is

fF(x) = 1
B
( ν1

2 , ν2
2

)
(

ν1

ν2

) ν1
2

x
ν1
2 −1

(
1 + ν1

ν2
x
)− ν1+ν2

2

, (2-104)

where ν1 an ν2 are the degrees of freedom and B(·, ·) is the Beta function.

The F-distribution appears as the ratio between two independent χ2-distributed
random variables:
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Theorem 2.96

Let U ∼ χ2(ν1) and V ∼ χ2(ν2), be independent then

F = U/ν1

V/ν2
∼ F(ν1, ν2). (2-105)

Again we will omit the proof of the theorem and rather show how it can be
visualized by simulation:

Example 2.97 F-distribution

# Simulate
nu1 <- 8; nu2 <- 10; k <- 200
u <- rchisq(k, df=nu1)
v <- rchisq(k, df=nu2)
fobs <- (u/nu1) / (v/nu2)
# Plot
par(mfrow=c(1,2))
hist(fobs, freq = FALSE)
curve(df(x, df1=nu1, df2=nu2), add=TRUE, col="red")
plot(ecdf(fobs))
curve(pf(x, df1=nu1, df2=nu2), add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.
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Theorem 2.98

Let X1, . . . , Xn1 be independent and sampled from a normal distribution
with mean µ1 and variance σ2

1 , further let Y1, . . . , Yn2 be independent and
sampled from a normal distribution with mean µ2 and variance σ2

2 . Then
the statistic

F = S2
1/σ2

1
S2

2/σ2
2
∼ F(n1 − 1, n2 − 1), (2-106)

follows an F-distribution.

Proof

Note that (n1−1)S2
1

σ2
1
∼ χ2(n1 − 1) and (n2−1)S2

2
σ2

2
∼ χ2(n2 − 1) and hence

(n1−1)S2
1

σ2
1 (n1−1)

(n2−1)S2
2

σ2
2 (n2−1)

=
S2

1
σ2

1

S2
2

σ2
2

∼ F(n1 − 1, n2 − 1). (2-107)

�

We can also illustrate this sample version by simulation:

Example 2.99 Relation between normal and F-distribution

# Simulate
n1 <- 8; n2 <- 10; k <- 200
mu1 <- 2; mu2 <- -1
sigma1 <- 2; sigma2 <- 4
s1 <- replicate(k, sd(rnorm(n1, mean=mu1, sd=sigma1)))
s2 <- replicate(k, sd(rnorm(n2, mean=mu2, sd=sigma2)))
fobs <- (s1^2 / sigma1^2) / (s2^2 / sigma2^2)
# Plot
par(mfrow=c(1,2))
hist(fobs, freq=FALSE)
curve(df(xseq, df1=n1-1, df2=n2-1), xname="xseq", add=TRUE, col="red")
plot(ecdf(fobs))
curve(pf(xseq, df1=n1-1, df2=n2-1), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

Remark 2.100

Of particular importance in statistics is the case when σ1 = σ2, in this case

F = S2
1

S2
2
∼ F(n1 − 1, n2 − 1). (2-108)

Theorem 2.101 Mean and variance

Let F ∼ F(ν1, ν2) then the mean and variance of F is

E(F) = ν2

ν2 − 2
; ν2 > 2, (2-109)

V(F) = 2ν2
2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4) ; ν2 > 4. (2-110)
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2.11 Exercises

Exercise 2.1 Discrete random variable

a) Let X be a stochastic variable. When running the R-command dbinom(4,10,0.6)
R returns 0.1115, written as:

dbinom(4,10,0.6)

[1] 0.1115

What distribution is applied and what does 0.1115 represent?

b) Let X be the same stochastic variable as above. The following are results
from R:

pbinom(4,10,0.6)

[1] 0.1662

pbinom(5,10,0.6)

[1] 0.3669

Calculate the following probabilities: P(X ≤ 5), P(X < 5), P(X > 4) and
P(X = 5).

c) Let X be a stochastic variable. From R we get:

dpois(4,3)

[1] 0.168

What distribution is applied and what does 0.168 represent?

d) Let X be the same stochastic variable as above. The following are results
from R:
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ppois(4,3)

[1] 0.8153

ppois(5,3)

[1] 0.9161

Calculate the following probabilities: P(X ≤ 5), P(X < 5), P(X > 4) and
P(X = 5).

Exercise 2.2 Course passing proportions

a) If a passing proportion for a course given repeatedly is assumed to be 0.80
on average, and there are 250 students who are taking the exam each time,
what is the expected value, µ and standard deviation, σ, for the number
of students who do not pass the exam for a randomly selected course?

Exercise 2.3 Notes in a box

A box contains 6 notes:

On 1 of the notes there is the number 1
On 2 of the notes there is the number 2
On 2 of the notes there is the number 3
On 1 of the notes there is the number 4

Two notes are drawn at random from the box, and the following random vari-
able is introduced: X, which describes the number of notes with the number 4
among the 2 drawn. The two notes are drawn without replacement.

a) The mean and variance for X, and P(X = 0) are?

b) The 2 notes are now drawn with replacement. What is the probability that
none of the 2 notes has the number 1 on it?
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Exercise 2.4 Consumer survey

In a consumer survey performed by a newspaper, 20 different groceries (prod-
ucts) were purchased in a grocery store. Discrepancies between the price ap-
pearing on the sales slip and the shelf price were found in 6 of these purchased
products.

a) At the same time a customer buys 3 random (different) products within
the group consisting of the 20 goods in the store. The probability that no
discrepancies occurs for this customer is?

Exercise 2.5 Hay delivery quality

A horse owner receives 20 bales of hay in a sealed plastic packaging. To con-
trol the hay, 3 bales of hay are randomly selected, and each checked whether it
contains harmful fungal spores.

It is believed that among the 20 bales of hay 2 bales are infected with fungal
spores. A random variable X describes the number of infected bales of hay
among the three selected.

a) The mean of X, (µX), the variance of X, (σ2
X) and P(X ≥ 1) are?

b) Another supplier advertises that no more than 1% of his bales of hay are
infected. The horse owner buys 10 bales of hay from this supplier, and
decides to buy hay for the rest of the season from this supplier if the 10
bales are error-free.
What is the probability that the 10 purchased bales of hay are error-free, if
1% of the bales from a supplier are infected (p1) and the probability that
the 10 purchased bales of hay are error-free, if 10% of the bales from a
supplier are infected (p10)?
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Exercise 2.6 Newspaper consumer survey

In a consumer survey performed by a newspaper, 20 different groceries (prod-
ucts) were purchased in a grocery store. Discrepancies between the price ap-
pearing on the sales slip and the shelf price were found in 6 of these purchased
products.

a) Let X denote the number of discrepancies when purchasing 3 random (dif-
ferent) products within the group of the 20 products in the store. What is
the mean and variance of X?

Exercise 2.7 A fully automated production

On a large fully automated production plant items are pushed to a side band
at random time points, from which they are automatically fed to a control unit.
The production plant is set up in such a way that the number of items sent to
the control unit on average is 1.6 item pr. minute. Let the random variable X
denote the number of items pushed to the side band in 1 minute. It is assumed
that X follows a Poisson distribution.

a) What is the probability that there will arrive more than 5 items at the con-
trol unit in a given minute is?

b) What is the probability that no more than 8 items arrive to the control unit
within a 5-minute period?

Exercise 2.8 Call center staff

The staffing for answering calls in a company is based on that there will be 180
phone calls per hour randomly distributed. If there are 20 calls or more in a
period of 5 minutes the capacity is exceeded, and there will be an unwanted
waiting time, hence there is a capacity of 19 calls per 5 minutes.

a) What is the probability that the capacity is exceeded in a random period
of 5 minutes?
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b) If the probability should be at least 99% that all calls will be handled with-
out waiting time for a randomly selected period of 5 minutes, how large
should the capacity per 5 minutes then at least be?

Exercise 2.9 Continuous random variable

a) The following R commands and results are given:

pnorm(2)

[1] 0.9772

pnorm(2,1,1)

[1] 0.8413

pnorm(2,1,2)

[1] 0.6915

Specify which distributions are used and explain the resulting probabili-
ties (preferably by a sketch).

b) What is the result of the following command: qnorm(pnorm(2))?

c) The following R commands and results are given:

qnorm(0.975)

[1] 1.96

qnorm(0.975,1,1)

[1] 2.96

qnorm(0.975,1,2)

[1] 4.92

State what the numbers represent in the three cases (preferably by a sketch).
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Exercise 2.10 The normal pdf

a) Which of the following statements regarding the probability density func-
tion of the normal distribution N(1, 22) is false?

1. The total area under the curve is equal to 1.0

2. The mean is equal to 12

3. The variance is equal to 2

4. The curve is symmetric about the mean

5. The two tails of the curve extend indefinitely

6. Don’t know

Let X be normally distributed with mean 24 and variance 16

b) Calculate the following probabilities:
– P(X ≤ 20)
– P(X > 29.5)
– P(X = 23.8)

Exercise 2.11 Computer chip control

A machine for checking computer chips uses on average 65 milliseconds per
check with a standard deviation of 4 milliseconds. A newer machine, poten-
tially to be bought, uses on average 54 milliseconds per check with a standard
deviation of 3 milliseconds. It can be used that check times can be assumed
normally distributed and independent.

a) What is the probability that the time savings per check using the new ma-
chine is less than 10 milliseconds is?

b) What is the mean (µ) and standard deviation (σ) for the total time use for
checking 100 chips on the new machine is?
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Exercise 2.12 Concrete items

A manufacturer of concrete items knows that the length (L) of his items are rea-
sonably normally distributed with µL = 3000 mm and σL = 3 mm. The require-
ment for these elements is that the length should be not more than 3007 mm
and the length must be at least 2993 mm.

a) The expected error rate in the manufacturing will be?

b) The concrete items are supported by beams, where the distance between
the beams is called Lbeam and can be assumed normal distributed. The
concrete items length is still called L. For the items to be supported cor-
rectly, the following requirements for these lengths must be fulfilled: 90 mm <
L− Lbeam < 110 mm. It is assumed that the mean of the distance between
the beams is µbeam = 2900 mm. How large may the standard deviation
σbeam of the distance between the beams be if you want the requirement
fulfilled in 99% of the cases?

Exercise 2.13 Online statistic video views

In 2013, there were 110,000 views of the DTU statistics videos that are avail-
able online. Assume first that the occurrence of views through 2014 follows a
Poisson process with a 2013 average: λ365days = 110000.

a) What is the probability that in a randomly chosen half an hour there is no
occurrence of views?

b) There has just been a view, what is the probability that you have to wait
more than fifteen minutes for the next view?
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Exercise 2.14 Body mass index distribution

The so-called BMI (Body Mass Index) is a measure of the weight-height-relation,
and is defined as the weight (W) in kg divided by the squared height (H) in
meters:

BMI = W
H2 .

Assume that the population distribution of BMI is a log-normal distribution
with α = 3.1 and β = 0.15 (hence that log(BMI) is normal distributed with
mean 3.1 and standard deviation 0.15).

a) A definition of "being obese" is a BMI-value of at least 30. How large a
proportion of the population would then be obese?

Exercise 2.15 Bivariate normal

a) In the bivariate normal distribution (see Example 2.73), show that if Σ is a
diagonal matrix then (X1, X2) are also independent and follow univariate
normal distributions.

b) Assume that Z1 and Z2 are independent standard normal random vari-
ables. Now let X and Y be defined by

X = a11Z1 + c1,
Y = a12Z1 + a22Z2 + c2.

Show that an appropriate choice of a11, a12, a22, c1, c2 can give any bivariate
normal distribution for the random vector (X, Y), i.e. find a11, a12, a22, c1, c2
as a function of µX, µY and the elements of Σ.

Note that Σij = Cov(Xi, Xj) (i.e. here Σ12 = Σ21 = Cov(X, Y)), and
that any linear combination of random normal variables will result in
a random normal variable.
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c) Use the result to simulate 1000 realization of a bivariate normal random
variable with µ = (1, 2) and

Σ =
[

1 1
1 2

]

and make a scatter plot of the bivariate random variable.

Exercise 2.16 Sample distributions

a) Verify by simulation that n1+n2−2
σ2 S2

p ∼ χ2(n1 + n2− 2) (See Example 2.85).
You may use n1 = 5, n2 = 8, µ1 = 2, µ2 = 4, and σ2 = 2.

b) Show that if X ∼ N(µ1, σ2) and Y ∼ N(µ2, σ2), then

X̄− Ȳ− (µ1 − µ2)
Sp

√
1

n1
+ 1

n2

∼ t(n1 + n2 − 2).

Verify the result by simulation. You may use n1 = 5, n2 = 8, µ1 = 2,
µ2 = 4, and σ2 = 2.

Exercise 2.17 Sample distributions 2

Let X1, ..., Xn and Y1, ..., Yn, with Xi ∼ N(µ1, σ2) and Yi ∼ N(µ2, σ2) be indepen-
dent random variables. Hence, two samples before they are taken. S2

1 and S2
2

are the sample variances based on the X’s and the Y’s respectively. Now define
a new random variable

Q = S2
1

S2
2

(2-111)

a) For n equal 2, 4, 8, 16 and 32 find:

1. P(Q < 1)
2. P(Q > 2)
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3. P
(

Q < 1
2

)

4. P
(

1
2 < Q < 2

)

b) For at least one value of n illustrate the results above by direct simulation
from independent normal distributions. You may use any values of µ1, µ2
and σ2.
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Chapter 3

Statistics for one and two samples

3.1 Learning from one-sample quantitative data

Statistics is the art and science of learning from data, i.e. statistical inference.
What we are usually interested in learning about is the population from which
our sample was taken, as described in Section 1.3. More specifically, most of
the time the aim is to learn about the mean of this population, as illustrated in
Figure 1.1.

Example 3.1 Student heights

In examples in Chapter 1 we did descriptive statistics on the following random sam-
ple of the heights of 10 students in a statistics class (in cm):

168 161 167 179 184 166 198 187 191 179

and we computed the sample mean and standard deviation to be

x̄ = 178,

s = 12.21.

The population distribution of heights will have some unknown mean µ and some
unknown standard deviation σ. We use the sample values as point estimates for
these population parameters

µ̂ = 178,

σ̂ = 12.21.



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 123

Since we only have a sample of 10 persons, we know that the point estimate of 178
cannot with 100% certainty be exactly the true value µ (if we collected a new sample
with 10 different persons height and computed the sample mean we would defi-
nitely expect this to be different from 178). The way we will handle this uncertainty
is by computing an interval called the confidence interval for µ. The confidence in-
terval is a way to handle the uncertainty by the use of probability theory. The most
commonly used confidence interval would in this case be

178± 2.26 · 12.21√
10

,

which is

178± 8.74.

The number 2.26 comes from a specific probability distribution called the t-
distribution, presented in Section 2.86. The t-distributions are similar to the stan-
dard normal distribution presented in Section 2.5.2: they are symmetric and centred
around 0.

The confidence interval interval

178± 8.74 = [169.3, 186.7],

represents the plausible values of the unknown population mean µ in light of the
data.

So in this section we will explain how to estimate the mean of a distribution and
how to quantify the precision, or equivalently the uncertainty, of our estimate.

We will start by considering a population characterized by some distribution
from which we take a sample x1, . . . , xn of size n. In the example above Xi
would be the height of a randomly selected person and x1, . . . , x10 our sample
of student heights.

A crucial issue in the confidence interval is to use the correct probabilities, that
is, we must use probability distributions that are properly representing the real
life phenomena we are investigating. In the height example, the population
distribution is the distribution of all heights in the entire population. So, this
is what you would see if you sampled from a huge amount of heights, say
n = 1000000, and then made a density histogram of these, see Example 1.25.
Another way of saying the same is: the random variables Xi have a probability
density function (pdf or f (x)) which describe exactly the distribution of all the
values. Well, in our setting we have only a rather small sample, so in fact we
may have to assume some specific pdf for Xi, since we don’t know it and really
can’t see it well from the small sample. The most common type of assumption,
or one could say model, for the population distribution is to assume it to be the
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normal distribution. This assumption makes the theoretical justification for the
methods easier. In many cases real life phenomena actually indeed are nicely
modelled by a normal distribution. In many other cases they are not. After tak-
ing you through the methodology based on a normal population distribution
assumption, we will show and discuss what to do with the non-normal cases.

Hence, we will assume that the random variable Xi follows a normal distribution
with mean µ and variance σ2:

Remark 3.2 How to write a statistical model

In all statistical analysis there must be an assumption of a model, which
should be stated clearly in the presentation of the analysis. The model ex-
pressing that the sample was taken randomly from the population, which is
normal distributed, can be written by

Xi ∼ N(µ, σ2) and i.i.d., where i = 1, . . . , n. (3-1)

Hence we n random variables representing the sample and they are indepen-
dent and identically distributed (i.i.d).

Our goal is to learn about the mean of the population µ, in particular, we want
to:

1. Estimate µ, that is calculate a best guess of µ based on the sample

2. Quantify the precision, or equivalently the uncertainty, of the estimate

Intuitively, the best guess of the population mean µ is the sample mean

µ̂ = x̄ = 1
n

n

∑
i=1

xi.

Actually, there is a formal theoretical framework to support that this sort of ob-
vious choice also is the theoretically best choice, when we have assumed that
the underlying distribution is normal. The next sections will be concerned with
answering the second question: quantifying how precisely x̄ estimates µ, that
is, how close we can expect the sample mean x̄ to be to the true, but unknown,
population mean µ. To answer this, we first, in Section 3.1.1, discuss the dis-
tribution of the sample mean, and then, in Section 3.1.2, discuss the confidence
interval for µ, which is universally used to quantify precision or uncertainty.
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3.1.1 Distribution of the sample mean

As indicated in Example 3.1 the challenge we have in using the sample mean x̄
as an estimate of µ is the unpleasant fact that the next sample we take would
give us a different result, so there is a clear element of randomness in our esti-
mate. More formally, if we take a new sample from the population, let us call
it x2,1, . . . , x2,n, then the sample mean of this, x̄2 = 1

n ∑n
i=1 x2,i will be different

from the sample mean of the first sample we took. In fact, we can repeat this
process as many times as we would like, and we would obtain:

1. Sample x1,1, . . . , x1,n and calculate the average x̄1

2. Sample x2,1, . . . , x2,n and calculate the average x̄2

3. Sample x3,1, . . . , x3,n and calculate the average x̄3

4. etc.

Since the sample means x̄j will all be different, it is apparent that the sample
mean is also the realization of a random variable. In fact it can be shown that if X
is a random variable with a normal distribution with mean µ and variance σ2,
then the random sample mean X̄ from a sample of size n is also a normally
distributed random variable with mean µ and variance σ2/n. This result is
formally expressed in the following theorem:

Theorem 3.3 The distribution of the mean of normal random vari-
ables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, Xi ∼ N(µ, σ2), i = 1, . . . , n, then

X̄ = 1
n

n

∑
i=1

Xi ∼ N
(

µ,
σ2

n

)
. (3-2)

Note how the formula in the theorem regarding the mean and variance of X̄ is
a consequence of the mean and variance of linear combinations Theorem 2.56

E(X̄) = 1
n

n

∑
i=1

E(Xi) = 1
n

n

∑
i=1

µ = 1
n

nµ = µ, (3-3)
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and

V(X̄) = 1
n2

n

∑
i=1

V(Xi) = 1
n2

n

∑
i=1

σ2 = 1
n2 nσ2 = σ2

n
, (3-4)

and using Theorem 2.40 it is clear that the mean of normal distributions also is
a normal distribution.

One important point to read from this theorem is that it tells us, at least
theoretically, what the variance of the sample mean is, and hence also
the standard deviation

σX̄ = σ√
n

. (3-5)

Let us elaborate a little on the importance of this. Due to the basic
rules for mean and variance calculations, i.e. Theorem 2.56, we know
that the difference between X̄ and µ has the same standard deviation

σ(X̄−µ) = σ√
n

. (3-6)

This is the mean absolute difference between the sample estimate X̄
and the true µ, or in other words: this is the mean of the error we will
make using the sample mean to estimate the population mean. This is
exactly what we are interested in: to use a probability distribution to
handle the possible error we make.

In our way of justifying and making explicit methods it is useful to consider
the so-called standardized sample mean, where the X̄ − µ is seen relative to its
standard deviation, and using the standardization of normal distributions in
Theorem 2.43, which states that the standardized sample mean has a standard
normal distribution:

Theorem 3.4 The distribution of the σ-standardized mean of nor-
mal random variables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, Xi ∼ N

(
µ, σ2) where i = 1, . . . , n, then

Z = X̄− µ

σ/
√

n
∼ N

(
0, 12

)
. (3-7)

That is, the standardized sample mean Z follows a standard normal distri-
bution.
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However, to somehow use the probabilities to say something clever about how
close the estimate x̄ is to µ, all these results have a flaw: the population standard
deviation σ (true, but unknown) is part of the formula. And in most practical
cases we don’t know the true standard deviation σ. The natural thing to do is
to use the sample standard deviation s as a substitute for (estimate of) σ. How-
ever, then the theory above breaks down: the sample mean standardized by the
sample standard deviation instead of the true standard deviation no longer has
a normal distribution! But luckily the distribution can be found (as a probability
theoretical result) and we call such a distribution a t-distribution with (n− 1)
degrees of freedom (for more details see Section 2.10.2):

Theorem 3.5 The distribution of the S-standardized mean of nor-
mal random variables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, where Xi ∼ N

(
µ, σ2) and i = 1, . . . , n, then

T = X̄− µ

S/
√

n
∼ t(n− 1), (3-8)

where t(n− 1) is the t-distribution with n− 1 degrees of freedom.

A t-distribution, as any other distribution, has a probability density function,
presented in Definition 2.86. It is similar in shape to the standard normal dis-
tribution: it is symmetric and centred around 0, but it has thicker tails as il-
lustrated in the figure of Example 2.92. Also, the t-distributions are directly
available in R, via the similar four types of R functions as seen also for the other
probability distributions, see the overview of distributions in A.2.1. So we can
easily work with t-distributions in practice. As indicated, there is a different
t-distribution for each n: the larger the n, the closer the t-distribution is to the
standard normal distribution.
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Example 3.6 Normal and t probabilities and quantiles

In this example we compare some probabilities from the standard normal distribu-
tion with the corresponding ones from the t-distribution with various numbers of
degrees of freedom.

Let us compare P(T > 1.96) for some different values of n with P(Z > 1.96):

# The P(T>1.96) probability for n=10
1 - pt(1.96, df = 9)

[1] 0.04082

# The P(Z>1.96) probability
1 - pnorm(1.96)

[1] 0.025

# The P(T>1.96) probability for n-values, 10, 20, ... ,50
1 - pt(1.96, df = seq(9, 49, by = 10))

[1] 0.04082 0.03241 0.02983 0.02858 0.02785

# The P(T>1.96) probability for n-values, 100, 200, ... ,500
1 - pt(1.96, df = seq(99, 499, by = 100))

[1] 0.02640 0.02570 0.02546 0.02535 0.02528

Note how the t-probabilities approach the standard normal probabilities as n in-
creases. Similarly for the quantiles:
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# The standard normal 0.975% quantile
qnorm(0.975)

[1] 1.96

# The t-quantiles for n-values: 10, 20, ... ,50
# (rounded to 3 decimal points)
qt(0.975, df = seq(9, 49, by = 10))

[1] 2.262 2.093 2.045 2.023 2.010

# The t-quantiles for n-values: 100, 200, ... ,500
# (rounded to 3 decimal points)
qt(0.975, df = seq(99, 499, by = 100))

[1] 1.984 1.972 1.968 1.966 1.965

The sample version of the standard deviation of the sample mean s/
√

n is called
the Standard Error of the Mean (and is often abbreviated SEM):

Definition 3.7 Standard Error of the mean

Given a sample X1, . . . , Xn, the Standard Error of the Mean is defined as

σx̄ = S√
n

. (3-9)

It can also be read as the Sampling Error of the mean, and can be called the
standard deviation of the sampling distribution of the mean.
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Remark 3.8

Using the phrase sampling distribution as compared to just the distribution of
the mean bears no mathematical/formal distinction: formally a probability
distribution is a probability distribution and there exist only one definition
of that. It is merely used to emphasize the role played by the distribution of
the sample mean, namely to quantify how the sample mean changes from
(potential) sample to sample, so more generally, the sample mean has a dis-
tribution (from sample to sample), so most textbooks and e.g. Wikipedia
would call this distribution a sampling distribution.

3.1.2 Quantifying the precision of the sample mean - the confi-
dence interval

As already discussed above, estimating the mean from a sample is usually not
enough: we also want to know how close this estimate is to the true mean (i.e.
the population mean). Using knowledge about probability distributions, we are
able to quantify the uncertainty of our estimate even without knowing the true
mean. Statistical practice is to quantify precision (or, equivalently, uncertainty)
with a confidence interval (CI).

In this section we will provide the explicit formula for and discuss confidence
intervals for the population mean µ. The theoretical justification, and hence as-
sumptions of the method, is a normal distribution of the population. However,
it will be clear in a subsequent section that the applicability goes beyond this
if the sample size n is large enough. The standard so-called one-sample confi-
dence interval method is:
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Method 3.9 The one sample confidence interval for µ

For a sample x1, . . . , xn the 100(1− α)% confidence interval is given by

x̄± t1−α/2 ·
s√
n

, (3-10)

where t1−α/2 is the (1 − α/2) quantile from the t-distribution with n − 1
degrees of freedom.a

Most commonly used is the 95%-confidence interval:

x̄± t0.975 ·
s√
n

. (3-11)

aNote how the dependence of n has been suppressed from the notation to leave room for
using the quantile as index instead - since using two indices would appear less readable:
tn−1,1−α/2

We will reserve the Method boxes for specific directly applicable statistical meth-
ods/formulas (as opposed to theorems and formulas used to explain, justify or
prove various points).

Example 3.10 Student heights

We can now use Method 3.9 to find the 95% confidence interval for the population
mean height from the height sample from Example 3.1. We need the 0.975-quantile
from the t-distribution with n− 1 = 9 degrees of freedom:

# The t-quantiles for n=10:
qt(0.975, 9)

[1] 2.262

And we can recognize the already stated result

178± 2.26 · 12.21√
10

,

which is

178± 8.74 = [169.3, 186.7].

Therefore with high confidence we conclude that the true mean height of the popu-
lation of students to be between 169.3 and 186.7.
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The confidence interval is widely used to summarize uncertainty, not only for
the sample mean, but also for many other types of estimates, as we shall see
in later sections of this chapter and in following chapters. It is quite common
to use 95% confidence intervals, but other levels, e.g. 99% are also used (it is
presented later in this chapter what the precise meaning of “other levels” is).

Example 3.11 Student heights

Let us try to find the 99% confidence interval for µ for the height sample from Exam-
ple 3.1. Now α = 0.01 and we get that 1− α/2 = 0.995, so we need the 0.995-quantile
from the t-distribution with n− 1 = 9 degrees of freedom:

# The t-quantile for n=10
qt(p=0.995, df=9)

[1] 3.25

And we can find the result as

178± 3.25 · 12.21√
10

,

which is:

178± 12.55 = [165.5, 190.5].

Or explicitly in R:

# The 99% confidence interval for the mean
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
n <- length(x)
mean(x) - qt(0.995, df = 9) * sd(x) / sqrt(n)

[1] 165.5

mean(x) + qt(0.995, df = 9) * sd(x) / sqrt(n)

[1] 190.5

Or using the inbuilt function t.test in R:
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# The 99% confidence interval for the mean
t.test(x, conf.level = 0.99)

One Sample t-test

data: x
t = 46, df = 9, p-value = 5e-12
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
165.5 190.5

sample estimates:
mean of x

178

As can be seen this R function provides various additional information and talks
about “t-test” and “p-value”. In a subsequent section below we will explain
what this is all about.

In our motivation of the confidence interval we used the assumption that the
population is normal distributed. Thankfully, as already pointed out above, the
validity is not particularly sensitive to the normal distribution assumption. In
later sections, we will discuss how to assess if the sample is sufficiently close to
a normal distribution, and what we can do if the assumption is not satisfied.

3.1.3 The language of statistics and the process of learning from
data

In this section we review what it means to make statistical inference using a
confidence interval. We review the concepts, first presented in Section 1.3, of: a
population, distribution, a parameter, an estimate, an estimator, and a statistic.

The basic idea in statistics is that there exists a statistical population (or just
population) which we want to know about or learn about, but we only have
a sample from that population. The idea is to use the sample to say something
about the population. To generalize from the sample to the population, we
characterize the population by a distribution (see Definition 1.1 and Figure 1.1).

For example, if we are interested in the weight of eggs lain by a particular
species of hen, the population consists of the weights of all currently existing
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eggs as well as weights of eggs that formerly existed and will (potentially) exist
in the future. We may characterize these weights by a normal distribution with
mean µ and variance σ2. If we let X denote the weight of a randomly chosen
egg, then we may write X ∼ N(µ, σ2). We say that µ and σ2 are the parameters
of this distribution - we call them population parameters.

Naturally, we do not know the values of these true parameters, and it is impos-
sible for us to ever know, since it would require that we weighed all possible
eggs that have existed or could have existed. In fact the true parameters of the
distribution N(µ, σ2) are unknown and will forever remain unknown.

If we take a random sample of eggs from the population of egg weights, say
we make 10 observations, then we have x1, . . . , x10. We call this the observed sam-
ple or just sample. From the sample, we can calculate the sample mean, x̄. We
say that x̄ is an estimate of the true population mean µ (or just mean, see Remark
1.3). In general we distinguish estimates of the parameters from the parameters
themselves, by adding a hat (circumflex). For instance, when we use the sample
mean as an estimate of the mean, we may write µ̂ = x̄ for the estimate and µ for
the parameter, see the illustration of this process in Figure 1.1.

We denote parameters such as µ and σ2 by Greek letters. Therefore parame-
ter estimates are Greek letters with hats on them. Random variables such as
X are denoted by capital Roman letters. The observed values of the random
variables are denoted by lower case instead – we call them realizations of the ran-
dom variables. For example, the sample x1, . . . , x10 represents actually observed
numbers (e.g. the weights of 10 eggs), so they are not random and therefore in
lower case. If we consider a hypothetical sample it is yet unobserved and there-
fore random and denoted by, say, X1, . . . , Xn and therefore in capital letters, see
also Section 2.1.

To emphasize the difference, we say that X1, . . . , Xn is a random sample, while we
say that x1, . . . , xn is a sample taken at random; the observed sample is not random
when it is observed, but it was produced as a result of n random experiments.

A statistic is a function of the data, and it can represent both a fixed value from
an observed sample or a random variable from a random (yet unobserved) sam-
ple. For example sample average x̄ = 1

n ∑n
i=1 xi is a statistic computed from an

observed sample, while X̄ = 1
n ∑n

i=1 Xi is also a statistic, but it is considered
a function of a random (yet unobserved) sample. Therefore X̄ is itself a ran-
dom variable with a distribution. Similarly the sample variance S2 is a random
variable, while s2 is its realized value and just a number.

An estimator (not to be confused with an estimate) is a function that produces an
estimate. For example, µ is a parameter, µ̂ is the estimate and we use X̄ as an
estimator of µ. Here X̄ is the function that produces the estimate of µ from a
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sample.

Learning from data is learning about parameters of distributions that describe
populations. For this process to be meaningful, the sample should in a mean-
ingful way be representative of the relevant population. One way to ensure that
this is the case is to make sure that the sample is taken completely at random
from the population, as formally defined here:

Definition 3.12 Random sample

A random sample from an (infinite) population: A set of observations
X1, ..., Xn constitutes a random sample of size n from the infinite population
f (x) if:

1. Each Xi is a random variable whose distribution is given by f (x)

2. The n random variables are independent

It is a bit difficult to fully comprehend what this definition really amounts to
in practice, but in brief one can say that the observations should come from
the same population distribution, and that they must each represent truly new
information (the independence).

Remark 3.13

Throughout previous sections and the rest of this chapter we assume infinite
populations. Finite populations of course exists, but only when the sam-
ple constitutes a large proportion of the entire population, is it necessary to
adjust the methods we discuss here. This occurs relatively infrequently in
practice and we will not discuss such conditions.

3.1.4 When we cannot assume a normal distribution: the Central
Limit Theorem

The Central Limit Theorem (CLT) states that the sample mean of independent
identically distributed (i.i.d.) random variables converges to a normal distribu-
tion:
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Theorem 3.14 Central Limit Theorem (CLT)

Let X̄ be the sample mean of a random sample of size n taken from a popu-
lation with mean µ and variance σ2, then

Z = X̄− µ

σ/
√

n
, (3-12)

is a random variable which distribution function approaches that of the
standard normal distribution, N(0, 12), as n → ∞. In other words, for large
enough n, it holds approximately that

X̄− µ

σ/
√

n
∼ N(0, 12). (3-13)

The powerful feature of the CLT is that, when the sample size n is large enough,
the distribution of the sample mean X̄ is (almost) independent of the distri-
bution of the population X. This means that the underlying distribution of a
sample can be disregarded when carrying out inference related to the mean.
The variance of the sample mean can be estimated from the sample and it can
be seen that as n increases the variance of the sample mean decreases, hence the
“accuracy” with which we can infer increases.
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Example 3.15 Central Limit Theorem in practice

# Number of simulated samples
k <- 1000

# Number of observations in each sample
n <- 1
# Simulate k samples with n observations
# Note, the use of replicate: it repeats the second argument (here k times)
Xbar <- replicate(k, runif(n))
hist(Xbar, col="blue", main="n=1", xlab="Sample means", xlim=xlim)
# Increase the number of observations in each sample
# Note, the use of apply here: it takes the mean on the 2nd dimension
# (i.e. column) of the matrix returned by replicate
n <- 2
Xbar <- apply(replicate(k, runif(n)), 2, mean)
hist(Xbar, col="blue", main="n=2", xlab="Sample means", xlim=xlim)
# Increase the number of observations in each sample
n <- 6
Xbar <- apply(replicate(k, runif(n)), 2, mean)
hist(Xbar, col="blue", main="n=6", xlab="Sample means", xlim=xlim)
# Increase the number of observations in each sample
n <- 30
Xbar <- apply(replicate(k, runif(n)), 2, mean)
hist(Xbar, col="blue", main="n=30", xlab="Sample means", xlim=xlim)
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Recognize the plot on the front page of the book.

Due to the amazing result of the Central Limit Theorem 3.14 many expositions
of classical statistics provides a version of the confidence interval based on the
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standard normal quantiles rather than the t-quantiles

x̄± z1−α/2 ·
s√
n

. (3-14)

We present it here only as an interesting limit situation of the t-based interval in
Method 3.9.

For large samples, the standard normal distribution and t-distribution are al-
most the same, so in practical situations, it doesn’t matter whether the normal
based or the t-based confidence interval (CI) is used. Since the t-based interval
is also valid for small samples when a normal distribution is assumed, we rec-
ommend that the t-based interval in Method 3.9 is used in all situations. This
recommendation also has the advantage that the R-function t.test, which pro-
duces the t-based interval, can be used in all cases.

How large should the sample then be in a non-normal case to ensure the validity
of the interval? No general answer can be given, but as a rule of thumb we
recommend n ≥ 30.

When we have a small sample for which we cannot or will not make a nor-
mality assumption, we have not yet presented a valid CI method. The classical
solution is to use the so-called non-parametric methods. However, in the next
chapter we will present the more widely applicable simulation or re-sampling
based techniques.

3.1.5 Repeated sampling interpretation of confidence intervals

In this section we show that 95% of the 95% confidence intervals we make will
cover the true value in the long run. Or, in general 100(1− α)% of the 100(1−
α)% confidence intervals we make will cover the true value in the long run. For
example, if we make 100 95% CI we cannot guarantee that exactly 95 of these
will cover the true value, but if we repeatedly make 100 95% CIs then on average
95 of them will cover the true value.

Example 3.16 Simulating many confidence intervals

To illustrate this with a simulation example, then we can generate 50 random
N(1, 12) distributed numbers and calculate the t-based CI given in Method 3.9, and
then repeated this 1000 times to see how many times the true mean µ = 1 is covered.
The following code illustrates this:
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# Simulate 1000 samples of n=50 observations, and
# calculate a CI from each sample
k <- 1000
ThousandCIs <- replicate(k, t.test(rnorm(n=50, mean=1, sd=1))$conf.int)
# Count how often 1 is covered
sum(ThousandCIs[1,] < 1 & 1 < ThousandCIs[2,])

[1] 954

Hence in 954 of the 1000 repetitions (i.e. 95.4%) the CI covered the true value. If
we repeat the whole simulation over, we would obtain 1000 different samples and
therefore 1000 different CIs. Again we expect that approximately 95% of the CIs will
cover the true value µ = 1.

The result that we arrived at by simulation in the previous example can also be
derived mathematically. Since

T = X̄− µ

S/
√

n
∼ t(n− 1),

where t is the t-distribution with n− 1 degrees of freedom, it holds that

1− α = P
(
−t1−α/2 <

X̄− µ

S/
√

n
< t1−α/2

)
,

which we can rewrite as

= P
(

X̄− t1−α/2
S√
n
< µ < X̄ + t1−α/2

S√
n

)
.

Thus, the probability that the interval with limits

X̄± t1−α/2
S√
n

, (3-15)

covers the true value µ is exactly 1− α. One thing to note is that the only dif-
ference between the interval above and the interval in Method 3.9, is that the
interval above is written with capital letters (simply indicating that it calculated
with random variables rather than with observations).

This shows exactly that 100(1− α)% of the 100(1− α)% confidence interval we
make will contain the true value in the long run.

3.1.6 Confidence interval for the variance

In previous sections we discussed how to calculate a confidence interval for the
mean. In this section we discuss how to calculate a confidence interval for the
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variance or the standard deviation.

We will assume that the observations come from a normal distribution through-
out this section, and we will not present any methods that are valid beyond this
assumption. While the methods for the sample mean in the previous sections
are not sensitive to (minor) deviations from the normal distribution, the meth-
ods discussed in this section for the sample variance rely much more heavily on
the correctness of the normal distribution assumption.

Example 3.17 Tablet production

In the production of tablets, an active matter is mixed with a powder and then the
mixture is formed to tablets. It is important that the mixture is homogeneous, such
that each tablet has the same strength.

We consider a mixture (of the active matter and powder) from where a large amount
of tablets is to be produced.

We seek to produce the mixtures (and the final tablets) such that the mean content of
the active matter is 1 mg/g with the smallest variance possible. A random sample is
collected where the amount of active matter is measured. It is assumed that all the
measurements follow a normal distribution.

The variance estimator, that is, the formula for the variance seen as a random
variable, is

S2 = 1
n− 1

n

∑
i=1

(Xi − X̄)2, (3-16)

where n is the number of observations, Xi is observation number i where i =
1, . . . , n, and X̄ is the estimator of the mean of X.

The (sampling) distribution of the variance estimator is the χ2-distribution dis-
tribution: let S2 be the variance of a sample of size n from a normal distribution
with variance σ2, then

χ2 = (n− 1)S2

σ2 , (3-17)

is a stochastic variable following the χ2-distribution with v = n− 1 degrees of
freedom.

The χ2-distribution, as any other distribution, has a probability density func-
tion. It is a non-symmetric distribution on the positive axis. It is a distribution
of squared normal random variables, for more details see Section 2.10.1. An
example of a χ2-distribution is given in the following:
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Example 3.18 The χ2-distribution

The density of the χ2-distribution with 9 degrees of freedom is:

# The chisquare-distribution with df=9 (the density)
x <- seq(0, 35, by = 0.1)
plot(x, dchisq(x, df = 9), type = "l", ylab="Density")
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So, the χ2-distributions are directly available in R, via the similar four types
of R-functions as seen for the other probability distributions presented in the
distribution overview, see Appendix A.3.

Hence, we can easily work with χ2-distributions in practice. As indicated there
is a different χ2-distribution for each n.
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Method 3.19 Confidence interval for the variance/standard devia-
tion

A 100(1− α)% confidence interval for the variance σ2 is
[

(n− 1)s2

χ2
1−α/2

,
(n− 1)s2

χ2
α/2

]
, (3-18)

where the quantiles come from a χ2-distribution with ν = n− 1 degrees of
freedom.

A 100(1− α)% confidence interval for the standard deviation σ is
[√

(n− 1)s2

χ2
1−α/2

,

√
(n− 1)s2

χ2
α/2

]
. (3-19)

Note: The confidence intervals for the variance and standard deviations are
generally non-symmetric as opposed to the t-based interval for the mean µ.

Example 3.20 Tablet production

A random sample of n = 20 tablets is collected and from this the mean is estimated
to x̄ = 1.01 and the variance to s2 = 0.072. Let us find the 95%-confidence interval
for the variance. To apply the method above we need the 0.025 and 0.975 quantiles
of the χ2-distribution with ν = 20− 1 = 19 degrees of freedom

χ2
0.025 = 8.907, χ2

0.975 = 32.85,

which we get from R:

# Quantiles of the chi-square distribution:
qchisq(p=c(0.025, 0.975), df=19)

[1] 8.907 32.852

Hence the confidence interval is
[

19 · 0.072

32.85
,

19 · 0.072

8.907

]
≈ [0.00283, 0.0105],

and for the standard deviation the confidence interval is[√
0.002834,

√
0.01045

]
≈ [0.053, 0.102] .
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3.1.7 Hypothesis testing, evidence, significance and the p-value

Example 3.21 Sleeping medicine

In a study the aim is to compare two kinds of sleeping medicine A and B. 10 test
persons tried both kinds of medicine and the following 10 DIFFERENCES between
the two medicine types were measured (in hours):

Person x = Beffect - Aeffect
1 1.2
2 2.4
3 1.3
4 1.3
5 0.9
6 1.0
7 1.8
8 0.8
9 4.6

10 1.4

For Person 1, Medicine B provided 1.2 sleep hours more than Medicine A, etc.

Our aim is to use these data to investigate if the two treatments are different in their
effect on length of sleep. We therefore let µ represent the mean difference in sleep
length. In particular we will consider the so-called null hypothesis

H0 : µ = 0,

which states that there is no difference in sleep length between the A and B Medicines.

If the observed sample turns out to be not very likely under this null hypothesis, we
conclude that the null hypothesis is unlikely to be true.

First we compute the sample mean

µ̂ = x̄1 = 1.67.

As of now, we don’t know if this number is particularly small or large. If the true
mean difference is zero, would it be unlikely to observe a mean difference this large?
Could it be due to just random variation? To answer this question we compute the
probability of observing a sample mean that is 1.67 or further from 0 – in the case
that the true mean difference is in fact zero. This probability is called a p-value. If
the p-value is small (say less than 0.05), we conclude that the null hypothesis isn’t
true. If the p-value is not small (say larger than 0.05), we conclude that we haven’t
obtained sufficient evidence to falsify the null hypothesis.
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After some computations that you will learn to perform later in this section, we
obtain a p-value

p-value ≈ 0.00117,

which indicates quite strong evidence against the null hypothesis. As a matter of
fact, the probability of observing a mean difference as far from zero as 1.67 or further
is only ≈ 0.001 (one out of thousand) and therefore very small.

We conclude that the null hypothesis is unlikely to be true as it is highly incompat-
ible with the observed data. We say that the observed mean µ̂ = 1.67 is statistically
significantly different from zero (or simply significant implying that it is different from
zero). Or that there is a significant difference in treatment effects of B and A, and we may
conclude that Medicine B makes patients sleep significantly longer than Medicine
A.
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p < 0.001 Very strong evidence against H0
0.001 ≤ p < 0.01 Strong evidence against H0
0.01 ≤ p < 0.05 Some evidence against H0
0.05 ≤ p < 0.1 Weak evidence against H0

p ≥ 0.1 Little or no evidence against H0

Table 3.1: A way to interpret the evidence for a given p-value.

The p-value

Definition 3.22 The p-value

The p-value is the probability of obtaining a test statistic that is at least as
extreme as the test statistic that was actually observed. This probability is
calculated under the assumption that the null hypothesis is true.

Interpretations of a p-value:

1. The p-value measures evidence

2. The p-value measures extremeness/unusualness of the data under the
null hypothesis (“under the null hypothesis” means “assuming the null
hypothesis is true”)

The p-value is used as a general measure of evidence against a null hypothesis:
the smaller the p-value, the stronger the evidence against the null hypothesis
H0. A typical strength of evidence scale is given in Table 3.1.

As indicated, the definition and interpretations above are generic in the sense
that they can be used for any kind of hypothesis testing in any kind of setup.
In later sections and chapters of this material, we will indeed encounter many
different such setups. For the specific setup in focus here, we can now give the
key method:



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 146

Method 3.23 The one-sample t-test statistic and the p-value

For a (quantitative) one sample situation, the p-value is given by

p-value = 2 · P(T > |tobs|), (3-20)

where T follows a t-distribution with (n− 1) degrees of freedom.
The observed value of the test statistics to be computed is

tobs = x̄− µ0

s/
√

n
, (3-21)

where µ0 is the value of µ under the null hypothesis

H0 : µ = µ0. (3-22)

The t-test and the p-value will in some cases be used to formalize actual decision
making and the risks related to it:

Definition 3.24 The hypothesis test

We say that we carry out a hypothesis test when we decide against a null
hypothesis or not, using the data.

A null hypothesis is rejected if the p-value, calculated after the data has been
observed, is less than some α, that is if the p-value < α, where α is some pre-
specified (so-called) significance level. And if not, then the null hypothesis is
said to be accepted.

Remark 3.25

Often chosen significance levels α are 0.05, 0.01 or 0.001 with the former
being the globally chosen default value.
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Remark 3.26

A note of caution in the use of the word accepted is in place: this should
NOT be interpreted as having proved anything: accepting a null hypothesis
in statistics simply means that we could not prove it wrong! And the reason
for this could just potentially be that we did not collect sufficient amount of
data, and acceptance hence proofs nothing at its own right.

Example 3.27 Sleeping medicine

Continuing from Example 3.21, we now illustrate how to compute the p-value using
Method 3.23.

# Enter sleep difference observations
x <- c(1.2, 2.4, 1.3, 1.3, 0.9, 1.0, 1.8, 0.8, 4.6, 1.4)
n <- length(x)
# Compute the tobs - the observed test statistic
tobs <- (mean(x) - 0) / (sd(x) / sqrt(n))
tobs

[1] 4.672

# Compute the p-value as a tail-probability in the t-distribution
pvalue <- 2 * (1-pt(abs(tobs), df=n-1))
pvalue

[1] 0.001166

Naturally, as we have seen already a function in R that can do this for us

t.test(x)

One Sample t-test

data: x
t = 4.7, df = 9, p-value = 0.001
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.8613 2.4787

sample estimates:
mean of x

1.67
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The confidence interval and the p-value supplements each other, and often both
the confidence interval and the p-value are reported. The confidence interval
covers those values of the parameter that we accept given the data, while the
p-value measures the extremeness of the data if the null hypothesis is true.

Example 3.28 Sleeping medicine

In the sleep medicine example the 95% confidence interval is

[0.86, 2.48] ,

so based on the data these are the values for the mean sleep difference of Medicine
B versus Medicine A that we accept can be true. Only if the data is so extreme
(i.e. rarely occurring) that we would only observe it 5% of the time the confidence
interval does not cover the true mean difference in sleep.

The p-value for the null hypothesis µ = 0 was ≈ 0.001 providing strong evidence
against the correctness of the null hypothesis.

If the null hypothesis was true, we would only observe this large a difference in
sleep medicine effect levels in around one out of a thousand times. Consequently
we conclude that the null hypothesis is unlikely to be true and reject it.

Statistical significance

The word significance can mean importance or the extent to which something matters
in our everyday language. In statistics, however, it has a very particular mean-
ing: if we say that an effect is significant, it means that the p-value is so low that
the null hypothesis stating no effect has been rejected at some significance level α.

Definition 3.29 Significant effect

An effect is said to be (statistically) significant if the p-value is less than the
significance level α. a

aOften, α = 0.05 is adopted.

At this point an effect would amount to a µ-value different from µ0. In other
contexts we will see later, effects can be various features of interest to us.
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Example 3.30 Statistical significance

Consider the following two situations:

1. A researcher decides on a significance level of α = 0.05 and obtains p-value =
0.023. She therefore concludes that the effect is statistically significant

2. Another researcher also adopts a significance level of α = 0.05, but obtains
p-value = 0.067. He concludes that the effect was not statistically significant

From a binary decision point of view the two researchers couldn’t disagree more.
However, from a scientific and more continuous evidence quantification point of
view there is not a dramatic difference between the findings of the two researchers.

In daily statistical and/or scientific jargon the word ”statistically” will often be
omitted, and when results then are communicated as significant further through
media or other places, it gives the risk that the distinction between the two
meanings gets lost. At first sight it may appear unimportant, but the big dif-
ference is the following: sometimes a statistically significant finding can be so
small in real size that it is of no real importance. If data collection involves very
big data sizes one may find statistically significant effects that for no practical
situations matter much or anything at all.

The null hypothesis

The null hypothesis most often expresses the status quo or that “nothing is hap-
pening”. This is what we have to believe before we perform any experiments
and observe any data. This is what we have to accept in the absence of any
evidence that the situation is otherwise. For example the null hypothesis in the
sleep medicine examples states that the difference in sleep medicine effect level
is unchanged by the treatment: this is what we have to accept until we obtain
evidence otherwise. In this particular example the observed data and the statis-
tical theory provided such evidence and we could conclude a significant effect.

The null hypothesis has to be falsifiable. This means that it should be possible to
collect evidence against it.
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Acceptance
Rejection Rejection

t0.025 t0.9750

Figure 3.1: The 95% critical value. If tobs falls in the pink area we would reject,
otherwise we would accept

Confidence intervals, critical values and significance levels

A hypothesis test, that is, making the decision between rejection and acceptance of
the null hypothesis, can also be carried out without actually finding the p-value.
As an alternative one can use the so-called critical values, that is the values of the
test-statistic which matches exactly the significance level, see Figure 3.1:

Definition 3.31 The critical values

The (1− α)100% critical values for the one-sample t-test are the α/2- and
1− α/2-quantiles of the t-distribution with n− 1 degrees of freedom

tα/2 and t1−α/2. (3-23)
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Method 3.32 The one-sample hypothesis test by the critical value

A null hypothesis is rejected if the observed test-statistic is more extreme than
the critical values

If |tobs| > t1−α/2 then reject, (3-24)

otherwise accept.

The confidence interval covers the acceptable values of the parameter given the
data:

Theorem 3.33 Confidence interval for µ

We consider a (1− α) · 100% confidence interval for µ

x̄± t1−α/2 ·
s√
n

. (3-25)

The confidence interval corresponds to the acceptance region for H0 when
testing the hypothesis

H0 : µ = µ0. (3-26)
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Remark 3.34

The proof of this theorem is almost straightforward: a µ0 inside the confi-
dence interval will fulfil that

|x̄− µ0| < t1−α/2 ·
s√
n

, (3-27)

which is equivalent to

|x̄− µ0|
s√
n

< t1−α/2, (3-28)

and again to

|tobs| < t1−α/2, (3-29)

which then exactly states that µ0 is accepted, since the tobs is within the
critical values.

The alternative hypothesis

Some times we may in addition to the null hypothesis, also explicitly state an
alternative hypothesis. This completes the framework that allows us to control the
rates at which we make correct and wrong conclusions in light of the alternative.

The alternative hypothesis is

H1 : µ 6= µ0. (3-30)

This is sometimes called the two-sided (or non-directional) alternative hypoth-
esis, because also one-sided (or directional) alternative hypothesis occur. How-
ever, the one-sided setup is not included in the book apart from a small discus-
sion below.

Example 3.35 Sleeping medicine – Alternative hypothesis

Continuing from Example 3.21 we can now set up the null hypothesis and the alter-
native hypothesis together

H0 : µ = 0

H1 : µ 6= 0.
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Which means that we have exactly the same setup just formalized by adding the
alternative hypothesis. The conclusion is naturally exactly the same as in before.

A generic approach for tests of hypotheses is:

1. Formulate the hypotheses and choose the level of significance α (choose
the "risk-level")

2. Calculate, using the data, the value of the test statistic

3. Calculate the p-value using the test statistic and the relevant sampling
distribution, compare the p-value and the significance level α, and finally
make a conclusion
or
Compare the value of the test statistic with the relevant critical value(s)
and make a conclusion

Combining this generic hypothesis test approach with the specific method boxes
of the previous section, we can now below give a method box for the one-
sample t-test. This is hence a collection of what was presented in the previous
section:
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Method 3.36 The level α one-sample t-test

1. Compute tobs using Equation (3-21)

tobs = x̄− µ0

s/
√

n

2. Compute the evidence against the null hypothesis

H0 : µ = µ0, (3-31)

vs. the alternative hypothesis

H1 : µ 6= µ0, (3-32)

by the

p-value = 2 · P(T > |tobs|), (3-33)

where the t-distribution with n− 1 degrees of freedom is used

3. If the p-value < α, we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±t1−α/2:
if |tobs| > t1−α/2 we reject H0, otherwise we accept H0

The so-called one-sided (or directional) hypothesis setup, where the alternative
hypothesis is either “less than” or “greater than”, is opposed to the previous
presented two-sided (or non-directional) setup, with a “different from” alter-
native hypothesis. In most situations the two-sided should be applied, since
when setting up a null hypothesis with no knowledge about in which direction
the outcome will be, then the notion of “extreme” is naturally in both directions.
However, in some situations the one-sided setup makes sense to use. As for ex-
ample in pharmacology where concentrations of drugs are studied and in some
situations it is known that the concentration can only decrease from one time
point of measurement to another (after the peak concentration). In such case a
“less than” is the only meaningful alternative hypothesis – one can say that na-
ture really has made the decision for us in that: either the concentration has not
changed (the null hypothesis) or it has dropped (the alternative hypothesis). In
other cases, e.g. more from the business and/or judicial perspective, one-sided
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hypothesis testing come up when for example a claim about the performance of
some product is tested.

The one-sided “less than” hypothesis setup is: compute the evidence against
the null hypothesis vs. the one-sided alternative hypothesis

H0 : µ ≥ µ0 (3-34)
H1 : µ < µ0, (3-35)

by the

p-value = P(T < tobs). (3-36)

and equivalently for the “greater than” setup

H0 : µ ≤ µ0 (3-37)
H1 : µ > µ0, (3-38)

by the

p-value = P(T > tobs). (3-39)

In both cases: if p-value < α: We reject H0, otherwise we accept H0.

Note that there are no one-sided hypothesis testing involved in the exercises.

Errors in hypothesis testing

When testing statistical hypotheses, two kind of errors can occur:

Type I: Rejection of H0 when H0 is true

Type II: Non-rejection (acceptance) of H0 when H1 is true

Example 3.37 Ambulance times

An ambulance company claims that on average it takes 20 minutes from a telephone
call to their switchboard until an ambulance reaches the location.

We might have some measurements (in minutes): 21.1, 22.3, 19.6, 24.2, ...

If our goal is to show that on average it takes longer than 20 minutes, the null- and
the alternative hypotheses are

H0 : µ = 20,

H1 : µ 6= 20.
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What kind of errors can occur?

Type I: Reject H0 when H0 is true, that is we mistakenly conclude that it takes longer
(or shorter) than 20 minutes for the ambulance to be on location

Type II: Not reject H0 when H1 is true, that is we mistakenly conclude that it takes
20 minutes for the ambulance to be on location

Example 3.38 Court of law analogy

A man is standing in a court of law accused of criminal activity.

The null- and the alternative hypotheses are

H0 : The man is not guilty,

H1 : The man is guilty.

We consider a man not guilty until evidence beyond any doubt proves him guilty.
This would correspond to an α of basically zero.

Clearly, we would prefer not to do any kinds of errors, however it is a fact of
life that we cannot avoid to do so: if we would want to never do a Type I error,
then we would never reject the null hypothesis, which means that we would
e.g. never conclude that one medical treatment is better than another, and thus,
that we would (more) often do a Type II error, since we would never detect
when there was a significance effect.

For the same investment (sample size n), we will increase the risk of a Type II
error by enforcing a lower risk of a Type I error. Only by increasing n we can
lower both of them, but to get both of them very low can be extremely expensive
and thus such decisions often involve economical considerations.

The statistical hypothesis testing framework is a way to formalize the handling
of the risk of the errors we may make and in this way make decisions in an
enlightened way knowing what the risks are. To that end we define the two
possible risks as

P("Type I error") = α,
P("Type II error") = β.

(3-40)

This notation is globally in statistical literature. The name choice for the Type I
error is in line with the use of α for the significance level, as:
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Theorem 3.39 Significance level and Type I error

The significance level α in hypothesis testing is the overall Type I risk

P("Type I error") = P("Rejection of H0 when H0 is true") = α. (3-41)

So controlling the Type I risk is what is most commonly apparent in the use of
statistics. Most published results are results that became significant, that is, the
p-value was smaller than α, and hence the relevant risk to consider is the Type I
risk.

Controlling/dealing with the Type II risk, that is: how to conclude on an exper-
iment/study in which the null hypothesis was not rejected (ı.e. no significant
effect was found) is not so easy, and may lead to heavy discussions if the non-
findings even get to the public. To which extent is a non-finding an evidence of
the null hypothesis being true? Well, in the outset the following very important
saying makes the point:

Remark 3.40

Absence of evidence is NOT evidence of absence!

Or differently put:
Accepting a null hypothesis is NOT a statistical proof of the null hypothesis
being true!

The main thing to consider here is that non-findings (non-significant results)
may be due to large variances and small sample sizes, so sometimes a non-
finding is indeed just that we know nothing. In other cases, if the sample sizes
were high, a non-finding may actually, if not proving an effect equal to zero,
which is not really possible, then at least indicate with some confidence that the
possible effect is small or even very small. The confidence interval is a more
clever method to use here, since the confidence interval will show the precision
of what we know, whether it includes the zero effect or not.

In Section 3.3 we will use a joint consideration of both error types to formalize
the planning of suitably sized studies/experiments.
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3.1.8 Assumptions and how to check them

The t-tests that have been presented above are based on some assumptions
about the sampling and the population. In Theorem 3.3 the formulations are
that the random variables X1, . . . , Xn are independent and identically normally
distributed: Xi ∼ N(µ, σ2). In this statement there are two assumptions:

• Independent observations

• Normal distribution

The assumption about independent observations can be difficult to check. It
means that each observation must bring a unique new amount of information to
the study. Independence will be violated if some measurements are not on ran-
domly selected units and share some feature – returning to the student height
example: we do not want to include twins or families in general. Having a sam-
ple of n = 20 heights, where 15 of them stem from a meeting with a large family
group would not be 20 independent observations. The independence assump-
tion is mainly checked by having information about the sampling procedure.

The assumption about normality can be checked graphically using the actual
sample at hand.

Example 3.41 Student heights

We will return to the height of the ten students from example 3.1. If we want to
check whether the sample of heights could come from a normal distribution then
we could plot a histogram and look for a symmetric bell-shape:
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# The height sample
x <- c(168,161,167,179,184,166,198,187,191,179)

# Using histograms
par(mfrow=c(1,3), mar=c(4,3,1,1))
hist(x, xlab="Height", main="")
hist(x, xlab="Height", main="", breaks=8)
hist(x, xlab="Height", main="", breaks=2)
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However, as we can see the histograms change shape depending on the number of
breaks. Instead of using histograms, one can plot empirical cumulative distribution
(see 1.6.2) and compare it with the best fitting normal distribution, in this case N(µ̂ =
178, σ̂2 = 12.212):
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# Plot the empirical cdf
plot(ecdf(x), verticals = TRUE)
# Plot the best normal cdf
xseq <- seq(0.9*min(x), 1.1*max(x), length.out = 100)
lines(xseq, pnorm(xseq, mean(x), sd(x)))
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In the accumulated distribution plot it is easier to see how close the distributions are
– compared to in the density histogram plot. However, we will go one step further
and do the q-q plot: The observations (sorted from smallest to largest) are plotted
against the expected quantiles – from the same normal distribution as above. If the
observations are normally distributed then the observed are close to the expected
and this plot is close to a straight line. In R we can generate this plot by the following:
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# The expected quantiles in a 0 to 1 uniform distribution
n <- length(x)
# They have equal distance
pseq <- (1:n-0.5)/n
# Plot the expected normal distribution quantiles
plot(x=qnorm(p=pseq), y=sort(x), xlab="Normal quantiles",

ylab="Sample quantiles")
# Mark the 1st and 3rd quantiles with crosses
points(x=qnorm(p=c(0.25,0.75)), y=quantile(x,probs=c(0.25,0.75)),

pch=3, col="red")
# Add a straight line through the 1st and 3rd quantiles
qqline(x)
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In the ideal normal case, the observations vs. the expected quantiles in the best
possible normal distribution will be on a straight line, here plotted with the inbuilt
function qqnorm:
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# Simulate 100 normal distributed observations
xsim <- rnorm(100, mean(x), sd(x))
# Do the q-q normal plot with inbuilt functions
qqnorm(xsim)
qqline(xsim)
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Note, that inbuilt functions do exactly the same as R code generating the first q-q
plot, except for a slight change for n < 10, as described in Method 3.42.

In this example the points are close to a straight line and we can assume that the
normal distribution holds. It can, however, be difficult to decide whether the plot is
close enough to a straight line, so there is a package in R (the MESS package) where
the observations are plotted together with eight simulated plots where the normal
distribution is known to hold. It is then possible to visually compare the plot based
on the observed data to the simulated data and see whether the distribution of the
observations is "worse" than they should be.

# Define the plotting function
qqwrap <- function(x, y, ...){

stdy <- (y-mean(y))/sd(y)
qqnorm(stdy, main="", ...)
qqline(stdy)}

# Do the Wally plot
wallyplot(x-mean(x), FUN=qqwrap, ylim=c(-3,3))
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When we look at the nine plots then the original data are plotted in the frame with
the red border. Comparing the observed data to the simulated data the straight
line for the observed data is no worse than some of the simulated data, where the
normality assumption is known to hold. So we conclude here that we apparently
have no problem in assuming the normal distribution for these data.
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Method 3.42 The Normal q-q plot

The ordered observations x(1), . . . , x(n), called the sample quantiles, are plot-
ted versus a set of expected normal quantiles zp1 , . . . , zpn . If the points are
not systematically deviating from a line, we accept the normal distribution
assumption. The evaluation of this can be based on some simulations of a
sample of the same size.

The usual definition of p1, . . . , pn to be used for finding the expected normal
quantiles is

pi = i− 0.5
n

, i = 1, . . . , n. (3-42)

Hence, simply the equally distanced points between 0.5/n and 1− 0.5/n.
This is the default method in the qqnorm function in R, when n > 10, if
n ≤ 10 instead

pi = i− 3/8
n + 1/4

, i = 1, . . . , n, (3-43)

is used.

Example 3.43 Student heights

An example of how the expected normal quantile is calculated by R can be seen
if we take the second smallest height 166. There are 2 observations ≤ 166, so
166 = x(2) can be said to be the observed 2−3/8

10.25 = 0.1585 quantile (where we use
the default R-definition for n ≤ 10). The 0.1585 quantile in the normal distribution
is qnorm(0.1585) = −1.00 and the point (−1.00, 166) can be seen on the q-q plot
above.

3.1.9 Transformation towards normality

In the above we looked at methods to check for normality. When the data are
not normally distributed it is often possible to choose a transformation of the
sample, which improves the normality.

When the sample is positive with a long tail or a few large observations then the
most common choice is to apply a logarithmic transformation, log(x). The log-
transformation will make the large values smaller and also spread the observa-
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tions on both positive and negative values. Even though the log-transformation
is the most common there are also other possibilities such as

√
x or 1

x for making
large values smaller, or x2 and x3 for making large values larger.

When we have transformed the sample we can use all the statistical analyse we
want. It is important to remember that we are now working on the transformed
scale (e.g. the mean and its confidence interval is calculated for log(x)) and
perhaps it will be necessary to back-transform to the original scale.

Example 3.44 Radon in houses

In an American study the radon level was measured in a number of houses. The
Environmental Protection Agency’s recommended action level is ≥ 4 pCi/L. Here
we have the results for 20 of the houses (in pCi/L):

House 1 2 3 4 5 6 7 8 9 10
Radon level 2.4 4.2 1.8 2.5 5.4 2.2 4.0 1.1 1.5 5.4
House 11 12 13 14 15 16 17 18 19 20
Radon level 6.3 1.9 1.7 1.1 6.6 3.1 2.3 1.4 2.9 2.9

The sample mean, median and std. deviance is: x̄ = 3.04, Q2 = 2.45 and sx = 1.72.

We would like to see whether these observed radon levels could be thought of as
coming from a normal distribution. To do this we will plot the data:

# Reading in the sample
radon <- c(2.4, 4.2, 1.8, 2.5, 5.4, 2.2, 4.0, 1.1, 1.5, 5.4, 6.3,

1.9, 1.7, 1.1, 6.6, 3.1, 2.3, 1.4, 2.9, 2.9)
par(mfrow = c(1,2))
hist(radon)
qqnorm(radon, ylab = "Sample quantiles", xlab = "Normal quantiles")
qqline(radon)
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From both plots we see that the data are positive and right skewed with a few large
observations. Therefore a log-transformation is applied:

# Transform using the natural logarithm
logRadon <- log(radon)
hist(logRadon)
qqnorm(logRadon, ylab = "Sample quantiles", xlab = "Normal quantiles")
qqline(logRadon)
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As we had expected the log-transformed data seem to be closer to a normal distri-
bution.

We can now calculate the mean and 95% confidence interval for the log-transformed
data. However, we are perhaps not interested in the mean of the log-radon levels,
then we have to back-transform the estimated mean and confidence interval using
exp(x). When we take the exponential of the estimated mean, then this is no longer
a mean but a median on the original pCi/L scale. This gives a good interpretation,
as medians are useful when the distributions are not symmetric.



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 167

# A confidence interval and t-test
t.test(logRadon, conf.level=0.95)

One Sample t-test

data: logRadon
t = 7.8, df = 19, p-value = 2e-07
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.7054 1.2234

sample estimates:
mean of x

0.9644

# Back transform to original scale, now we get the median!
exp(0.9644)

[1] 2.623

# And the confidence interval on the original scale
exp(c(0.7054, 1.2234))

[1] 2.025 3.399

From the R code we see that the mean log-radon level is 0.96 (95% CI: 0.71 to 1.22).
On the original scale the estimated median radon level is 2.6 pCi/L (95% CI: 2.0 to
3.4).

Theorem 3.45 Transformations and quantiles

In general, the data transformations discussed in this section will preserve
the quantiles of the data. Or more precisely, if f is a data transformation
function (an increasing function), then

The pth quantile of f (Y) = f (The pth quantile of Y). (3-44)

The consequence of this theorem is that confidence limits on one scale trans-
form easily to confidence limits on another scale even though the transforming
function is non-linear.
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3.2 Learning from two-sample quantitative data

In this section the setup, where we can learn about the difference between the
means from two populations, is presented. This is very often a setup encoun-
tered in most fields of science and engineering: compare the quality of two
products, compare the performance of two groups, compare a new drug to a
placebo and so on. One could say, that it should be called a two-population
setup, since it is really two populations (or groups) which are compared by tak-
ing a sample from each, however it is called a two-sample setup (probably it
sounds better to say).

First, the two-sample setup is introduced with an example and then methods
for confidence intervals and tests are presented.

Example 3.46 Nutrition study

In a nutrition study the aim is to investigate if there is a difference in the energy
usage for two different types of (moderately physically demanding) work. In the
study, the energy usage of 9 nurses from hospital A and 9 (other) nurses from hos-
pital B have been measured. The measurements are given in the following table in
mega Joule (MJ):

Hospital A Hospital B
7.53 9.21
7.48 11.51
8.08 12.79
8.09 11.85

10.15 9.97
8.40 8.79

10.88 9.69
6.13 9.68
7.90 9.19

Our aim is to assess the difference in energy usage between the two groups of nurses.
If µA and µB are the mean energy expenditures for nurses from hospital A and B,
then the estimates are just the sample means

µ̂A = x̄A = 8.293,

µ̂B = x̄B = 10.298.

To assess the difference in means, δ = µB − µA, we could consider the confidence
interval for δ = µB − µA. Clearly, the estimate for the difference is the difference of
the sample means, δ̂ = µ̂B − µ̂A = 2.005.
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The 95% confidence interval is

2.005± 1.412 = [0.59, 3.42],

which spans the mean differences in energy expenditure that we find acceptable
based on the data. Thus we do not accept that the mean difference could be zero.

The interval width, given by 1.41, as we will learn below, comes from a simple com-
putation using the two sample standard deviations, the two sample sizes and a t-
quantile.

We can also compute a p-value to measure the evidence against the null hypothesis
that the mean energy expenditures are the same. Thus we consider the following
null hypothesis

H0 : δ = 0.

Since the 95% confidence interval does not cover zero, we already know that the p-
value for this significance test will be less than 0.05. In fact it turns out that the
p-value for this significance test is 0.0083 indicating strong evidence against the
null hypothesis that the mean energy expenditures are the same for the two nurse
groups. We therefore have strong evidence that the mean energy expenditure of
nurses from hospital B is higher than that of nurses from hospital A.

This section describes how to compute the confidence intervals and p-values in such
two-sample setups.

3.2.1 Comparing two independent means - confidence Interval

We assume now that we have a sample x1, . . . , xn taken at random from one
population with mean µ1 and variance σ2

1 and another sample y1, . . . , yn taken
at random from another population with mean µ2 and variance σ2

2 .
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Method 3.47 The two-sample confidence interval for µ1 − µ2

For two samples x1, . . . , xn and y1, . . . , yn the 100(1− α)% confidence inter-
val for µ1 − µ2 is given by

x̄− ȳ± t1−α/2 ·
√

s2
1

n1
+ s2

2
n2

, (3-45)

where t1−α/2 is the (1− α/2)-quantile from the t-distribution with ν degrees
of freedom given from Equation (3-50)

ν =

(
s2

1
n1

+ s2
2

n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

. (3-46)

Note how the t-quantile used for the confidence interval is exactly what we
called the critical value above.

Example 3.48 Nutrition study

Let us find the 95% confidence interval for µB − µA. Since the relevant t-quantile is,
using ν = 15.99,

t0.975 = 2.120,

the confidence interval becomes

10.298− 8.293± 2.120 ·
√

2.0394
9

+ 1.954
9

,

which then gives the result as also seen above

[0.59, 3.42].

3.2.2 Comparing two independent means - hypothesis test

We describe the setup as having a random sample from each of two different
populations, each described by a mean and a variance:
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• Population 1: has mean µ1, and variance σ2
1

• Population 2: has mean µ2, and variance σ2
2

The interest lies in the comparisons of the means.

Method 3.49 The (Welch) two-sample t-test statistic

When considering the null hypothesis about the difference between the
means of two independent samples

δ = µ2 − µ1,
H0 : δ = δ0,

(3-47)

the (Welch) two-sample t-test statistic is

tobs = (x̄1 − x̄2)− δ0√
s2

1/n1 + s2
2/n2

. (3-48)

Theorem 3.50 The distribution of the (Welch) two-sample statistic

The (Welch) two-sample statistic seen as a random variable

T = (X̄1 − X̄2)− δ0√
S2

1/n1 + S2
2/n2

, (3-49)

approximately, under the null hypothesis, follows a t-distribution with ν

degrees of freedom, where

ν =

(
s2

1
n1

+ s2
2

n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

, (3-50)

if the two population distributions are normal or if the two sample sizes are
large enough.

We can now, based on this, express the full hypothesis testing procedures for
the two-sample setting:
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Method 3.51 The level α two-sample t-test

1. Compute the test statistic using Equation (3-48) and ν from Equa-
tion (3-50)

tobs = (x̄1 − x̄2)− δ0√
s2

1/n1 + s2
2/n2

and ν =

(
s2

1
n1

+ s2
2

n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

2. Compute the evidence against the null hypothesisa

H0 : µ1 − µ2 = δ0,

vs. the alternative hypothesis

H1 : µ1 − µ2 6= δ0,

by the

p-value = 2 · P(T > |tobs|),

where the t-distribution with ν degrees of freedom is used

3. If p-value < α: we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±t1−α/2:
if |tobs| > t1−α/2 we reject H0, otherwise we accept H0

aWe are often interested in the test where δ0 = 0

An assumption that often is applied in statistical analyses of various kinds is
that of the underlying variability being of the same size in different groups or
at different conditions. The assumption is rarely crucial for actually carrying
out some good statistics, but it may indeed make the theoretical justification for
what is done more straightforward, and the actual computational procedures
also may become more easily expressed. We will see in later chapters how this
comes in play. Actually, the methods presented above do not make this as-
sumption, which is nice. The fewer assumptions needed the better, obviously.
Assumptions are problematic in the sense, that they may be questioned for par-
ticular applications of the methods.
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However, below we will present a version of the two-sample t-test statistic, that
actually is adapted to such an assumption, namely assuming that the two pop-
ulation variances are the same: σ2

1 = σ2
2 . We present it here not because we

really need it, we will use the above in all situations. But the version below
will appear and be used many places and it also bears some nice relations to
later multi-group analysis (Analysis of Variance (ANOVA)) that we will get to
in Chapter 8.

If we believe in the equal variance assumption it is natural to compute a single
joint – called the pooled – estimate of the variance based on the two individual
variances:

Method 3.52 The pooled two-sample estimate of variance

Under the assumption that σ2
1 = σ2

2 the pooled estimate of variance is the
weighted average of the two sample variances

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
. (3-51)

Note that when there is the same number of observations in the two groups,
n1 = n2, the pooled variance estimate is simply the average of the two sample
variances. Based on this the so-called pooled two-sample t-test statistic can be
given:

Method 3.53 The pooled two-sample t-test statistic

When considering the null hypothesis about the difference between the
means of two independent samples

δ = µ1 − µ2,
H0 : δ = δ0.

(3-52)

the pooled two-sample t-test statistic is

tobs = (x̄1 − x̄2)− δ0√
s2

p/n1 + s2
p/n2

. (3-53)
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And the following theorem would form the basis for hypothesis test procedures
based on the pooled version:

Theorem 3.54 The distribution of the pooled two-sample t-test
statistic

The pooled two-sample statistic seen as a random variable:

T = (X̄1 − X̄2)− δ0√
S2

p/n1 + S2
p/n2

. (3-54)

follows, under the null hypothesis and under the assumption that σ2
1 = σ2

2 ,
a t-distribution with n1 + n2 − 2 degrees of freedom if the two population
distributions are normal.

A little consideration will show why choosing the Welch-version as the ap-
proach to always use makes good sense: First of all if s2

1 = s2
2 the Welch and the

Pooled test statistics are the same. Only when the two variances become really
different the two test-statistics may differ in any important way, and if this is
the case, we would not tend to favour the pooled version, since the assumption
of equal variances appears questionable then.

Only for cases with a small sample sizes in at least one of the two groups the
pooled approach may provide slightly higher power if you believe in the equal
variance assumption. And for these cases the Welch approach is then a some-
what cautious approach.

Example 3.55 Nutrition study

Let us consider the nurses example again, and test the null hypothesis expressing
that the two groups have equal means

H0 : δ = µA − µB = 0,

versus the alternative

H0 : δ = µA − µB 6= 0,

using the most commonly used significance level, α = 0.05. We follow the steps
of Method 3.51: we should first compute the test-statistic tobs and the degrees of
freedom ν. These both come from the basic computations on the data:
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# Load the two samples
xA <- c(7.53, 7.48, 8.08, 8.09, 10.15, 8.4, 10.88, 6.13, 7.9)
xB <- c(9.21, 11.51, 12.79, 11.85, 9.97, 8.79, 9.69, 9.68, 9.19)
# Summary statistics
c(mean(xA), mean(xB))

[1] 8.293 10.298

c(var(xA), var(xB))

[1] 2.039 1.954

c(length(xA), length(xB))

[1] 9 9

So

tobs = 10.298− 8.293√
2.0394/9 + 1.954/9

= 3.01,

and

ν =
( 2.0394

9 + 1.954
9

)2

(2.0394/9)2

8 + (1.954/9)2

8

= 15.99.

Or the same done in R by ”manual” expression:

# Keep the summary statistics
ms <- c(mean(xA), mean(xB))
vs <- c(var(xA), var(xB))
ns <- c(length(xA), length(xB))
# The observed statistic
t_obs <- (ms[2]-ms[1])/sqrt(vs[1]/ns[1]+vs[2]/ns[2])
# The degrees of freedom
nu <- ((vs[1]/ns[1]+vs[2]/ns[2])^2)/

((vs[1]/ns[1])^2/(ns[1]-1)+(vs[2]/ns[2])^2/(ns[2]-1))
# Print the result
t_obs

[1] 3.009

nu

[1] 15.99
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Next step is then to find the p-value

p-value = 2 · P(T > |tobs|) = 2P(T > 3.01) = 2 · 0.00415 = 0.0083,

where we use R to find the probability P(T > 3.01) based on a t-distribution with
ν = 15.99 degrees of freedom:

1 - pt(t_obs, df = nu)

[1] 0.004161

To complete the hypothesis test, we compare the p-value with the given α-level, in
this case α = 0.05, and conclude:

Since the p-value < α we reject the null hypothesis, and we have sufficient ev-
idence for concluding: the two nurse groups have on average different energy
usage work levels. We have shown this effect to be statistically significant.

In spite of a pre-defined α-level (whoever gave us that), it is always valuable to
consider at what other α-levels the hypothesis would be rejected/accepted. Or in
different words, interpret the size of the p-value using Table 3.1 and we thus sharpen
the statement a little:

Since the p-value in this case is between 0.001 and 0.01 conclude: there is
a strong evidence against equality of the two population energy usage means
and it is found that the mean is significantly higher on Hospital B compared to
Hospital A.

The last part, that the mean is higher on Hospital B, can be concluded because it is
rejected that they are equal and x̄B > x̄A and we can thus add this to the conclusion.

Finally, the t-test computations are actually directly provided by the t.test function
in R, if it is called using two data input vectors:

t.test(xB, xA)

Welch Two Sample t-test

data: xB and xA
t = 3, df = 16, p-value = 0.008
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.5923 3.4166

sample estimates:
mean of x mean of y

10.298 8.293
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Note, how the default choices of the R-function matches our exposition:

• Default test version: the Welch (not assuming equal variances)

• Default α-level: 0.05

• Default ”direction version”: the two-sided (or non-directional) alternative hy-
pothesis, see Section 3.1.7 about other alternative hypotheses)

Actually, the final rejection/acceptance conclusion based on the default (or chosen)
α-level is not given by R.

In the t.test results the α-level is used for the given confidence interval for the
mean difference of the two populations, to be interpreted as: we accept that the
true difference in mean energy levels between the two nurse groups is somewhere
between 0.6 and 3.4.

Remark 3.56

Often ”degrees of freedom” are integer values, but in fact t-distributions
with non-integer valued degrees of freedom are also well defined. The
ν = 15.99 t-distribution (think of the density function) is a distribution in
between the ν = 15 and the ν = 16 t-distributions. Clearly it will indeed be
very close to the ν = 16 one.

We did not in the example above use Step 4. of Method 3.51, which can be
called the critical value approach. In fact this approach is directly linked to
the confidence interval in the sense that one could make a rapid conclusion
regarding rejection or not by looking at the confidence interval and checking
whether the hypothesized value is in the interval or not. This would correspond
to using the critical value approach.

Example 3.57 Nutrition study

In the nutrition example above, we can see that 0 is not in the confidence interval so
we would reject the null hypothesis. Let us formally use Step 4 of Method 3.51 to
see how this is exactly the same: the idea is that one can even before the experiment
is carried out find the critical value(s), in this case:

The 5% critical values = ±t0.975 = ±2.120,

where the quantile is found from the t-distribution with ν = 15.99 degrees of free-
dom:
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qt(0.975, df = 15.99)

[1] 2.12

Now we conclude that since the observed t-statistic tobs = 3.01 is beyond the crit-
ical values (either larger than 2.120 or smaller than −2.120) the null hypothesis is
rejected, and further since it was higher, that µA − µB > 0 hence µB > µA.

Example 3.58 Overlapping confidence intervals?

A commonly encountered way to visualize the results of a two-sample comparison
is to use a bar plot of the means together with some measure of uncertainty, either
simply the standard errors of the means or the 95% confidence intervals within each
group:

# The confidence intervals and joining the lower and upper limits
CIA <- t.test(xA)$conf.int
CIB <- t.test(xB)$conf.int
lower <- c(CIA[1], CIB[1])
upper <- c(CIA[2], CIB[2])
# First install the package with: install.packages("gplots")
library(gplots)
barplot2(c(mean(xA),mean(xB)), plot.ci=TRUE, ci.l=lower, ci.u=upper,

col = 2:3)

0
2

4
6

8
10

Here care must taken in the interpretation of this plot: it is natural, if your main
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aim is a comparison of the two means, to immediately visually check whether the
shown error bars, in this case the confidence intervals, overlap or not, to make a con-
clusion about group difference. Here they actually just overlap - could be checked
by looking at the actual CIs:

# The confidence intervals
CIA

[1] 7.196 9.391
attr(,"conf.level")
[1] 0.95

CIB

[1] 9.223 11.372
attr(,"conf.level")
[1] 0.95

And the conclusion would (incorrectly) be that the groups are not statistically dif-
ferent. However, remind that we found above that the p-value = 0.008323, so we
concluded that there was strong evidence of a mean difference between the two
nurse groups.

The problem of the ”overlapping CI interpretation” illustrated in the example
comes technically from the fact that standard deviations are not additive but
variances are

σ(X̄A−X̄B) 6= σX̄A
+ σX̄B

,

V(X̄A − X̄B) = V(X̄A) + V(X̄B).
(3-55)

The latter is what the confidence interval for the mean difference µA− µB is using
and what should be used for the proper statistical comparison of the means.
The former is what you implicitly use in the ”overlapping CI interpretation
approach”.

The proper standard deviation (sampling error) of the sample mean difference due
to Pythagoras, is smaller than the sum of the two standard errors: assume that
the two standard errors are 3 and 4. The sum is 7, but the square-root of the
squares is

√
32 + 42 = 5. Or more generally

σ(X̄A−X̄B) < σX̄A
+ σX̄B

. (3-56)

So we can say the following:
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Remark 3.59

When interpreting two (and multi-) independent samples mean bar plots
with added confidence intervals:

When two CIs do NOT overlap: The two groups are significantly different

When two CIs DO overlap: We do not know from this what the conclusion
is (but then we can use the presented two-sample test method)

One can consider other types of plots for visualizing (multi)group differences.
We will return to this in Chapter 8 on the multi-group data analysis, the so-
called Analysis of Variance (ANOVA).

3.2.3 The paired design and analysis

Example 3.60 Sleeping medicine

In a study the aim is to compare two kinds of sleeping medicine A and B. 10 test
persons tried both kinds of medicine and the following results are obtained, given
in prolonged sleep length (in hours) for each medicine type:

Person A B D = B− A
1 +0.7 +1.9 +1.2
2 -1.6 +0.8 +2.4
3 -0.2 +1.1 +1.3
4 -1.2 +0.1 +1.3
5 -1.0 -0.1 +0.9
6 +3.4 +4.4 +1.0
7 +3.7 +5.5 +1.8
8 +0.8 +1.6 +0.8
9 0.0 +4.6 +4.6
10 +2.0 +3.4 +1.4

Note that this is the same experiment as already treated in Example 3.21. We now in
addition see the original measurements for each sleeping medicine rather than just
individual differences given earlier. And we saw that we could obtain the relevant
analysis (p-value and confidence interval) by a simple call to the t.test function
using the 10 differences:
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# Read the samples
x1 <- c(.7,-1.6,-.2,-1.2,-1,3.4,3.7,.8,0,2)
x2 <- c(1.9,.8,1.1,.1,-.1,4.4,5.5,1.6,4.6,3.4)
# Take the differences
dif <- x2 - x1
# t-test on the differences
t.test(dif)

One Sample t-test

data: dif
t = 4.7, df = 9, p-value = 0.001
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.8613 2.4787

sample estimates:
mean of x

1.67

The example shows that this section actually could be avoided, as the right way
to handle this so-called paired situation is to apply the one-sample theory and
methods from Section 3.1 on the differences

di = xi − yi for i = 1, 2, ..., n. (3-57)

Then we can do all relevant statistics based on the mean d̄ and the variance s2
d

for these differences.

The reason for having an entire section devoted to the paired t-test is that it is
an important topic for experimental work and statistical analysis. The paired
design for experiments represents an important generic principle for doing ex-
periments as opposed to the un-paired/independent samples design, and these
important basic experimental principles will be important also for multi-group
experiments and data, that we will encounter later in the material.
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Example 3.61 Sleeping medicine

And similarly in R, they have prepared way to do the paired analysis directly on the
two-sample data:

t.test(x2, x1, paired = TRUE)

Paired t-test

data: x2 and x1
t = 4.7, df = 9, p-value = 0.001
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.8613 2.4787

sample estimates:
mean of the differences

1.67

Paired vs. completely randomized experiments

An experiment like the one exemplified here where two treatments are investi-
gated can essentially be performed in two different ways:

Completely Randomized (independent samples) 20 patients are used and com-
pletely at random allocated to one of the two treatments (but usually mak-
ing sure to have 10 patients in each group). So: different people in the
different groups.

Paired (dependent samples) 10 patients are used, and each of them tests both
of the treatments. Usually this will involve some time in between treat-
ments to make sure that it becomes meaningful, and also one would typ-
ically make sure that some patients do A before B and others B before A.
(and doing this allocation at random). So: the same people in the different
groups.

Generally, one would expect that whatever the experiment is about and which
observational units are involved (people, patients, animals) the outcome will
be affected by the properties of each individual – the unit. In the example,
some people will react positively to both treatments because they generally are
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more prone to react to sleeping medicines. Others will not respond as much
to sleeping medicine. And these differences, the person-to-person variability,
will give a high variance for the Welch independent samples t-test used for
the independent samples case. So generally, one would often prefer to carry
out a paired experiment, where the generic individual variability will not blur
the signal – one can say that in a paired experiment, each individual serves as
his/her own control – the effect of the two treatments are estimated for each
individual. We illustrate this by analysing the example data wrongly, as if they
were the results of a completely randomized experiment on 20 patients:

Example 3.62 Sleeping medicine - WRONG analysis

What happens when applying the wrong analysis:

# WRONG analysis
t.test(x1, x2)

Welch Two Sample t-test

data: x1 and x2
t = -1.9, df = 18, p-value = 0.07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.4854 0.1454

sample estimates:
mean of x mean of y

0.66 2.33

Note how the p-value here is around 0.07 as opposed to the 0.001 from the proper
paired analysis. Also the confidence interval is much wider. Had we done the ex-
periment with 20 patients and gotten the results here, then we would not be able
to detect the difference between the two medicines. What happened is that the in-
dividual variabilities seen in each of the two groups now, incorrectly so, is being
used for the statistical analysis and these are much larger than the variability of the
differences:



Chapter 3 3.2 LEARNING FROM TWO-SAMPLE QUANTITATIVE DATA 184

var(x1)

[1] 3.452

var(x2)

[1] 4.009

var(x1-x2)

[1] 1.278

3.2.4 Validation of assumptions with normality investigations

For normality investigations in two-sample settings we use the tools given for
one-sample data, presented in Section 3.1.8. For the paired setting, the investi-
gation would be carried out for the differences. For the independent case the
investigation is carried out within each of the two groups.
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3.3 Planning a study: wanted precision and power

Experiments and observational studies are always better when they are care-
fully planned. Good planning covers many features of the study. The obser-
vations must be sampled appropriately from the population, reliable measure-
ments must be made and the study must be "big enough" to be able to detect
an effect of interest. And if the study becomes too big, effects of little practical
interest may become statistically significant, and (some of) the money invested
in the study will be wasted. Sample size is important for economic reasons: an
oversized study uses more resources than necessary, this could be both finan-
cial but also ethical if subjecting objects to potentially harmful treatments, an
undersized study can be wasted if it is not able to produce reliable results.

Sample size is very important to consider before a study is carried out.

3.3.1 Sample Size for wanted precision

One way of calculating the required sample size is to work back from the wanted
precision. From (3-10) we see that the confidence interval is symmetric around
x̄ and the half width of the confidence interval (also called the margin of error
(ME)) is given as

ME = t1−α/2
σ√
n

. (3-58)

Here t1−α/2 is the (1− α/2) quantile from the t-distribution with n− 1 degrees
of freedom. This quantile depends on both α and the sample size n, which is
what we want to find.

The sample size now affects both n and t1−α/2, but if we have a large sample
(e.g. n ≥ 30) then we can use the normal approximation and replace t1−α/2 by
the quantile from the normal distribution z1−α/2.

In the expression for ME in Equation (3-58) we also need σ, the standard devi-
ation. An estimate of the standard deviation would usually only be available
after the sample has been taken. Instead we use a guess for σ possibly based on
a pilot study or from the literature, or we could use a scenario based choice (i.e.
set σ to some value which we think is reasonable).

For a given choice of ME it is now possible to isolate n in Equation (3-58) (with
the normal quantile inserted instead of the t-quantile):
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Method 3.63 The one-sample CI sample size formula

When σ is known or guessed at some value, we can calculate the sample
size n needed to achieve a given margin of error, ME, with probability 1− α

as

n =
(z1−α/2 · σ

ME

)2
. (3-59)

Example 3.64 Student heights

In Example 3.1 we inferred using a sample of heights of 10 students and found the
sample mean height to be x̄ = 178 and standard deviation s = 12.21. We can now
calculate how many students we should include in a new study, if we want a margin
of error of 3 cm with confidence 95%. Using the standard deviation from the pilot
study with 10 students as our guess we can plug into Method 3.63

n =
(

1.96 · 12.21
3

)2

= 63.64.

These calculations show that we should include 64 students, the nearest integer to
63.64.

The formula and approach here has the weakness that it only gives an “ex-
pected” behaviour of a coming experiment - at first reading this may seem good
enough, but if you think about it, it means that approximately half of the times
the actual width will be smaller and the other half, it will be larger than ex-
pected. If the uncertainty variability is not too large it might not be a big prob-
lem, but nothing in the approach helps us to know whether it is good enough
– we cannot guarantee a minimum accuracy with a certain probability. A more
advanced approach, that will help us control more precisely that a future exper-
iment/study will meet our needs, is presented now.

3.3.2 Sample size and statistical power

Another way of calculating the necessary sample size is to use the power of the
study. The statistical power of a study is the probability of correctly rejecting H0 if H0
is false. The relations between Type I error, Type II error and the power are seen
in the table below.
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Figure 3.2: The mean µ0 is the mean under H0 and µ1 the mean under H1. When
µ1 increases (i.e. moving away from µ0) so does the power (the yellow area on
the graph).

Reject H0 Fail to reject H0
H0 is true Type I error (α) Correct acceptance of H0
H0 is false Correct rejection of H0 (Power) Type II error (β)

The power has to do with the Type II error β, the probability of wrongly accept-
ing H0, when H0 actually is false. We would like to have high power (low β), but
it is clear that this will be impossible for all possible situations: it will depend
on the scenario for the potential mean – small potential effects will be difficult
to detect (low power), whereas large potential effects will be easier to detect
(higher power), as illustrated in Figure 3.2. In the left plot we have the mean
under H0 (µ0) close to the mean under the alternative hypothesis (µ1) making
it difficult to distinguish between the two and the power becomes low. In the
right plot µ0 and µ1 are further apart and the statistical power is much higher.

The power approach to calculating the sample size first of all involves specify-
ing the null hypothesis H0. Then the following four elements must be speci-
fied/chosen:

• The significance level α of the test (in R: sig.level)

• A difference in the mean that you would want to detect, effect size (in R:
delta)

• The standard deviation σ (in R: sd)

• The wanted power (1− β) (in R: power)

When these values have been decided, it is possible to calculate the necessary
sample size, n. In the one-sided, one-sample t-test there is an approximate
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closed form for n and this is also the case in some other simple situations. R
offers easy to use functions for this not based on the approximate normal dis-
tribution assumption, but using the more proper t-distributions. In more com-
plicated settings even it is possible to do some simulations to find the required
sample size.

Method 3.65 The one-sample sample size formula

For the one-sample t-test for given α, β and σ

n =
(

σ
z1−β + z1−α/2

(µ0 − µ1)

)2

,

where µ0 − µ1 is the difference in means that we would want to detect and
z1−β, z1−α/2 are quantiles of the standard normal distribution.

Example 3.66 Sample size as function of power

The following figure shows how the sample size increases with increasing power
using the formula in 3.65. Here we have chosen σ = 1 and α = 0.05. Delta is
µ0 − µ1.
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Example 3.67 Student heights

If we return to the example with student heights 3.1, we might want to collect data
for a new study to test the hypothesis about the mean height

H0 : µ = 180

Against the alternative

H1 : µ 6= 180

This is the first step in the power approach. The following four elements then are:

• Set the significance level α equal to 5%

• Specify that we want to be able to detect a difference of 4 cm

• We will use the standard deviation 12.21 from the study with 10 subjects as
our guess for σ

• We want a power of 80%

Using the formula in 3.65 we get

n =
(

12.21 · 0.84 + 1.96
4

)2

= 73.05.

So we would need to include 74 students.
We could also use the R function for power and sample size based on the t-
distributions:

power.t.test(power=0.8, delta=4, sd=12.21, sig.level=0.05,
type="one.sample")

One-sample t test power calculation

n = 75.08
delta = 4

sd = 12.21
sig.level = 0.05

power = 0.8
alternative = two.sided

From the calculations in R avoiding the normal approximation the required sample
size is 76 students, very close to the number calculated by hand using the approxi-
mation above.
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In fact the R-function is really nice in the way that it could also be used to find the
power for a given sample size, e.g. n = 50 (given all the other aspects):

power.t.test(n=50, delta=4, sd=12.21, sig.level=0.05,
type="one.sample")

One-sample t test power calculation

n = 50
delta = 4

sd = 12.21
sig.level = 0.05

power = 0.6221
alternative = two.sided

This would only give the power 0.62 usually considered too low for a relevant effect
size.

And finally the R-function can tell us what effect size that could be detected by, say,
n = 50, and a power of 0.80:

power.t.test(n=50, power=0.80, sd=12.21, sig.level=0.05,
type="one.sample")

One-sample t test power calculation

n = 50
delta = 4.935

sd = 12.21
sig.level = 0.05

power = 0.8
alternative = two.sided

So with n = 50 only an effect size as big as 4.9 would be detectable with probability
0.80.

To summarize: if we know/define 4 out the 5 values: α, 1− β, effect size, σ and
n, we can find the 5’th. And to repeat, in the R-function these values are called
sig.level, power, delta, sd and n.
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In the practical planning of a study, often a number of scenario-based values of
effect size and σ are used to find a reasonable size of the study.

3.3.3 Power/Sample size in two-sample setup

For power and sample size one can generalize the tools presented for the one-
sample setup in the previous section. We illustrate it here by an example of how
to work with the inbuilt R-function:

Example 3.68 Two-sample power and sample size computations
in R

We consider the two-sample hypothesis test

H0 : µ1 = µ2,

H1 : µ1 6= µ2

# Finding the power of detecting a group difference of 2
# with sigma=1 for n=10
power.t.test(n=10, delta=2, sd=1, sig.level=0.05)

Two-sample t test power calculation

n = 10
delta = 2

sd = 1
sig.level = 0.05

power = 0.9882
alternative = two.sided

NOTE: n is number in *each* group
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# Finding the sample size for detecting a group difference of 2
# with sigma=1 and power=0.9
power.t.test(power=0.90, delta=2, sd=1, sig.level=0.05)

Two-sample t test power calculation

n = 6.387
delta = 2

sd = 1
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

# Finding the detectable effect size (delta)
# with sigma=1, n=10 and power=0.9
power.t.test(power=0.90, n=10, sd=1, sig.level=0.05)

Two-sample t test power calculation

n = 10
delta = 1.534

sd = 1
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

Note how the two-sample t-test is the default choice of the R-function. Previously,
when we used the same function for the one-sample tests, we used the options
type="one.sample".
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3.4 Exercises

Exercise 3.1 Concrete items

A construction company receives concrete items for a construction. The length
of the items are assumed reasonably normally distributed. The following re-
quirements for the length of the elements are made

µ = 3000 mm.

The company samples 9 items from a delevery which are then measured for
control. The following measurements (in mm) are found:

3003 3005 2997 3006 2999 2998 3007 3005 3001

a) Compute the following three statistics: the sample mean, the sample stan-
dard deviation and the standard error of the mean, and what are the in-
terpretations of these statistics?

b) In a construction process, 5 concrete items are joined together to a single
construction with a length which is then the complete length of the 5 con-
crete items. It is very important that the length of this new construction
is within 15 m plus/minus 1 cm. How often will it happen that such a
construction will be more than 1 cm away from the 15 m target (assume
that the population mean concrete item length is µ = 3000 mm and that
the population standard deviation is σ = 3)?

c) Find the 95% confidence interval for the mean µ.

d) Find the 99% confidence interval for µ. Compare with the 95% one from
above and explain why it is smaller/larger!
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e) Find the 95% confidence intervals for the variance σ2 and the standard
deviation σ.

f) Find the 99% confidence intervals for the variance σ2 and the standard
deviation σ.

Exercise 3.2 Aluminum profile

The length of an aluminum profile is checked by taking a sample of 16 items
whose length is measured. The measurement results from this sample are listed
below, all measurements are in mm:

180.02 180.00 180.01 179.97 179.92 180.05 179.94 180.10
180.24 180.12 180.13 180.22 179.96 180.10 179.96 180.06

From data is obtained: x̄ = 180.05 and s = 0.0959.

It can be assumed that the sample comes from a population which is normal
distributed.

a) A 90%-confidence interval for µ becomes?

b) A 99%-confidence interval for σ becomes?

Exercise 3.3 Concrete items (hypothesis testing)

This is a continuation of Exercise 1, so the same setting and data is used (read
the initial text of it).

a) To investigate whether the requirement to the mean is fulfilled (with α =
5%), the following hypothesis should be tested

H0 : µ = 3000
H1 : µ 6= 3000.

Or similarly asked: what is the evidence against the null hypothesis?
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b) What would the level α = 0.01 critical values be for this test, and what are
the interpretation of these?

c) What would the level α = 0.05 critical values be for this test (compare also
with the values found in the previous question)?

d) Investigate, by som plots, whether the data here appears to be coming
from a normal distribution (as assumed until now)?

e) Assuming that you, maybe among different plots, also did the normal q-q
plot above, the question is now: What exactly is plotted in that plot? Or
more specifically: what are the x- and y-coordinates of e.g. the two points
to the lower left in this plot?

Exercise 3.4 Aluminium profile (hypothesis testing)

We use the same setting and data as in Exercise 2, so read the initial text of it.

a) Find the evidence against the following hypothesis:

H0 : µ = 180.

b) If the following hypothesis test is carried out

H0 : µ = 180,
H1 : µ 6= 180.

What are the level α = 1% critical values for this test?
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c) What is the 99%-confidence interval for µ?

d) Carry out the following hypothesis test

H0 : µ = 180,
H1 : µ 6= 180,

using α = 5%.

Exercise 3.5 Transport times

A company, MM, selling items online wants to compare the transport times for
two transport firms for delivery of the goods. To compare the two companies
recordings of delivery times on a specific route were made, with a sample size
of n = 9 for each firm. The following data were found:

Firm A: ȳA = 1.93 d and sA = 0.45 d,
Firm B: ȳB = 1.49 d and sB = 0.58 d.

note that d is the SI unit for days. It is assumed that data can be regarded as
stemming from normal distributions.

a) We want to test the following hypothesis

H0 : µA = µB
H1 : µA 6= µB

What is the p-value, interpretation and conclusion for this test (at α = 5%
level)?

b) Find the 95% confidence interval for the mean difference µA − µB.
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c) What is the power of a study with n = 9 observations in each of the two
samples of detecting a potential mean difference of 0.4 between the firms
(assume that σ = 0.5 and that we use α = 0.05)?

d) What effect size (mean difference) could be detected with n = 9 observa-
tions in each of the two samples with a power of 0.8 (assume that σ = 0.5
and that we use α = 0.05)?

e) How large a sample size (from each firm) would be needed in a new inves-
tigation, if we want to detect a potential mean difference of 0.4 between the
firms with probability 0.90, that is with power=0.90 (assume that σ = 0.5
and that we use α = 0.05)?

Exercise 3.6 Cholesterol

In a clinical trial of a cholesterol-lowering agent, 15 patients’ cholesterol (in
mmol/L) has been measured before treatment and 3 weeks after starting treat-
ment. Data are listed in the following table:

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Before 9.1 8.0 7.7 10.0 9.6 7.9 9.0 7.1 8.3 9.6 8.2 9.2 7.3 8.5 9.5
After 8.2 6.4 6.6 8.5 8.0 5.8 7.8 7.2 6.7 9.8 7.1 7.7 6.0 6.6 8.4

The following is run in R:

x1 <- c(9.1, 8.0, 7.7, 10.0, 9.6, 7.9, 9.0, 7.1,
8.3, 9.6, 8.2, 9.2, 7.3, 8.5, 9.5)

x2 <- c(8.2, 6.4, 6.6, 8.5, 8.0, 5.8, 7.8, 7.2,
6.7, 9.8, 7.1, 7.7, 6.0, 6.6, 8.4)

t.test(x1, x2)

Welch Two Sample t-test

data: x1 and x2
t = 3.3, df = 27, p-value = 0.003
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alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.4637 1.9630

sample estimates:
mean of x mean of y

8.600 7.387

t.test(x1, x2, pair=TRUE)

Paired t-test

data: x1 and x2
t = 7.3, df = 14, p-value = 0.000004
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.8588 1.5678

sample estimates:
mean of the differences

1.213

a) Can there, based on these data be demonstrated a significant decrease in
cholesterol levels with α = 0.001?

Exercise 3.7 Pulse

13 runners had their pulse measured at the end of a workout and 1 minute after
again and we got the following pulse measurements:

Runner 1 2 3 4 5 6 7 8 9 10 11 12 13
Pulse end 173 175 174 183 181 180 170 182 188 178 181 183 185
Pulse 1min 120 115 122 123 125 140 108 133 134 121 130 126 128

The following was run in R:

Pulse_end <- c(173,175,174,183,181,180,170,182,188,
178,181,183,185)

Pulse_1min <- c(120,115,122,123,125,140,108,133,134,
121,130,126,128)

mean(Pulse_end)
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[1] 179.5

mean(Pulse_1min)

[1] 125

sd(Pulse_end)

[1] 5.19

sd(Pulse_1min)

[1] 8.406

sd(Pulse_end-Pulse_1min)

[1] 5.768

a) What is the 99% confidence interval for the mean pulse drop (meaning the
drop during 1 minute from end of workout)?

b) Consider now the 13 pulse end measurements (first row in the table).
What is the 95% confidence interval for the standard deviation of these?

Exercise 3.8 Foil production

In the production of a certain foil (film), the foil is controlled by measuring the
thickness of the foil in a number of points distributed over the width of the foil.
The production is considered stable if the mean of the difference between the
maximum and minimum measurements does not exceed 0.35 mm. At a given
day, the following random samples are observed for 10 foils:

Foil 1 2 3 4 5 6 7 8 9 10
Max. in mm (ymax) 2.62 2.71 2.18 2.25 2.72 2.34 2.63 1.86 2.84 2.93
Min. in mm (ymin) 2.14 2.39 1.86 1.92 2.33 2.00 2.25 1.50 2.27 2.37
Max-Min (D) 0.48 0.32 0.32 0.33 0.39 0.34 0.38 0.36 0.57 0.56
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The following statistics may potentially be used

ȳmax = 2.508, ȳmin = 2.103, symax = 0.3373, symin = 0.2834, sD = 0.09664.

a) What is a 95% confidence interval for the mean difference?

b) How much evidence is there that the mean difference is different from
0.35? State the null hypothesis, t-statistic and p-value for this question.

Exercise 3.9 Course project

At a specific education it was decided to introduce a project, running through
the course period, as a part of the grade point evaluation. In order to assess
whether it has changed the percentage of students passing the course, the fol-
lowing data was collected:

Before introduction After introduction
of project of project

Number of students evaluated 50 24
Number of students failed 13 3
Average grade point x̄ 6.420 7.375
Sample standard deviation s 2.205 1.813

a) As it is assumed that the grades are approximately normally distributed
in each group, the following hypothesis is tested:

H0 : µBefore = µAfter,
H1 : µBefore 6= µAfter.

The test statistic, the p-value and the conclusion for this test become?

b) A 99% confidence interval for the mean grade point difference is?
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c) A 95% confidence interval for the grade point standard deviation after the
introduction of the project becomes?

Exercise 3.10 Concrete items (sample size)

This is a continuation of Exercise 1, so the same setting and data is used (read
the initial text of it).

a) A study is planned of a new supplier. It is expected that the standard
deviation will be approximately 3, that is, σ = 3 mm. We want a 90%
confidence interval for the mean value in this new study to have a width
of 2 mm. How many items should be sampled to achieve this?

b) Answer the sample size question above but requiring the 99% confidence
interval to have the (same) width of 2 mm.

c) (Warning: This is a difficult question about a challenging abstraction - do
not worry, if you do not make this one) For the two sample sizes found
in the two previous questions find the probability that the correspond-
ing confidence interval in the future study will actually be more than 10%
wider than planned for (still assuming and using that the population vari-
ance is σ2 = 9).

d) Now a new experiment is to be planned. In the first part above, given
some wanted margin of error (ME) a sample size of n = 25 was found.
What are each of the probabilities that an experiment with n = 25 will de-
tect effects corresponding to (”end up significant for”) µ1 = 3001, 3002, 3003
respectively? Assume that we use the typical α = 0.05 level and that
σ = 3?
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e) One of the sample size computation above led to n = 60 (it is not so im-
portant how/why). Answer the same question as above using n = 60.

f) What sample size would be needed to achieve a power of 0.80 for an effect
of size 0.5?

g) Assume that you only have the finances to do an experiment with n = 50.
How large a difference would you be able to detect with probability 0.8
(i.e. Power= 0.80)?
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Chapter 4

Simulation Based Statistics

4.1 Probability and Simulation

4.1.1 Introduction

One of the really big gains for statistics and modelling of random phenomena,
provided by computer technology during the last decades, is the ability to sim-
ulate random systems on the computer, as we have already seen much in use
in Chapter 2. This provides possibilities to obtain results that otherwise from a
mathematical analytical point of view would be impossible to calculate. And,
even in cases where the highly educated mathematician/physicist might be able
to find solutions, simulation is a general and simple calculation tool allowing
solving complex problems without a need for deep theoretical insight.

An important reason for including this subject in an introductory statistics course,
apart from using it as a pedagogical tool to aide the understanding of random
phenomena, is the fact that the methods we are usually introducing in basic
statistics are characterized by relying on one of two conditions:

1. The original data population density is assumed to be a normal distribu-
tion

2. Or: The sample size n is large enough to make this assumption irrelevant
for what we do

And in real settings it may be challenging to know for sure whether any of these
two are really satisfied, so to what extend can we trust the statistical conclusions
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that we make using our basic tools, as e.g. the one- and two-sample statistical
methods presented in Chapter 3. And how should we do the basic statistical
analysis if we even become convinced that none of these two conditions are ful-
filled? Statistical data analysis based on simulation tools is a valuable tool to
complete the tool box of introductory statistics. It can be used to do statistical
computing for other features than just means, and for other population distri-
butions than the normal. It can also be used to investigate whether some of our
assumptions appear reasonable. We already saw an example of this in relation
to the qq-plots in Chapter 3.1.9.

In fact, it will become clear that the simulation tools presented here will make
us rapidly able to perform statistical analysis that goes way beyond what histor-
ically has been introduced in basic statistics classes or textbooks. Unfortunately,
the complexity of real life engineering applications and data analysis challenges
can easily go beyond the settings that we have time to cover within an intro-
ductory exposition. With the general simulation tool in our tool box, we have
a multi-tool that can be used for (and adapted to) basically almost any level of
complexity that we will meet in our future engineering activity.

The classical statistical practice would be to try to ensure that the data we’re
analyzing behaves like a normal distribution: symmetric and bell-shaped his-
togram. In Chapter 3 we also learned that we can make a normal q-q plot to
verify this assumption in practice, and possibly transform the data to get them
closer to being normal. The problem with small samples is that it even with
these diagnostic tools can be difficult to know whether the underlying distribu-
tion really is ”normal” or not.

And in some cases the assumption of normality after all simply may be obvi-
uosly wrong. For example, when the response scale we work with is far from
being quantitative and continuous - it could be a scale like ”small”, ”medium”
and ”large” - coded as 1, 2 and 3. We need tools that can do statistical analy-
sis for us WITHOUT the assumption that the normal distribution is the right
model for the data we observe and work with.

Traditionally, the missing link would be covered by the so-called non-parametric
tests. In short this is a collection of methods that make use of data at a more
coarse level, typically by focusing on the rank of the observations instead of the
actual values of the observations. So in a paired t-test setup, for example, one
would just count how many times the observations in one sample is bigger than
in the other – instead of calculating the differences. In that way you can make
statistical tests without using the assumption of an underlying normal distribu-
tion. There are a large number of such non-parametric tests for different setups.
Historically, before the computer age, it was the only way to really handle such
situations in practice. These tests are all characterized by the fact that they are
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given by relatively simple computational formulas which in earlier times easily
could be handled. For small sample statistics with questionable distributional
settings, these tools maintain to offer a robust set of basic statistical procedures.

The simulation based methods that we now present instead have a couple of
crucial advantages to the traditional non-parametric methods:

• Confidence intervals are much easier to achieve

• They are much easier to apply in more complex situations

• They scale better to modern time big data analysis

4.1.2 Simulation as a general computational tool

Basically, the strength of the simulation tool is that one can compute arbitrary
functions of random variables and their outcomes. In other words one can find
probabilities of complicated outcomes. As such, simulation is really not a statis-
tical tool, but rather a probability calculus tool. However, since statistics essen-
tially is about analysing and learning from real data in the light of certain proba-
bilities, the simulation tool indeed becomes of statistical importance, which we
will exemplify very specifically below. Before starting with exemplifying the
power of simulation as a general computational tool, we refer to the introduc-
tion to simulation in Chapter 2 – in particular read first Section 2.6, Example
2.15 and thereafter Section 2.6.

Example 4.1 Rectangular plates

A company produces rectangular plates. The length of plates (in meters), X is as-
sumed to follow a normal distribution N(2, 0.012) and the width of the plates (in
meters), Y are assumed to follow a normal distribution N(3, 0.022). We’re hence
dealing with plates of size 2× 3 meters, but with errors in both length and width.
Assume that these errors are completely independent. We are interested in the area
of the plates which of course is given by A = XY. This is a non-linear function of X
and Y, and actually it means that we, with the theoretical tools we presented so far
in the material, cannot figure out what the mean area really is, and not at all what
the standard deviation would be in the areas from plate to plate, and we would defi-
nitely not know how to calculate the probabilities of various possible outcomes. For
example, how often such plates have an area that differ by more than 0.1 m2 from
the targeted 6 m2? One statement summarizing all our lack of knowledge at this
point: we do not know the probability distribution of the random variable A and
we do not know how to find it! With simulation, it is straightforward: one can find
all relevant information about A by just simulating the X and Y a high number of
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times, and from this compute A just as many times, and then observe what happens
to the values of A. The first step is then given by:

# Number of simulations
k <- 10000
# Simulate X, Y and then A
X <- rnorm(k, 2, 0.01)
Y <- rnorm(k, 3, 0.02)
A <- X*Y

The R object A now contains 10.000 observations of A. The expected value and the
standard deviation for A are simply found by calculating the average and standard
deviation for the simulated A-values:

mean(A)

[1] 6

sd(A)

[1] 0.04957

and the desired probability, P(|A− 6| > 0.1) = 1− P(5.9 ≤ A ≤ 6.1) is found by
counting how often the incident actually occurs among the k outcomes of A:

mean(abs(A-6)>0.1)

[1] 0.0439

The code abs(A-6)>0.1 creates a vector with values TRUE or FALSE depending on
whether the absolute value of A− 6 is greater than 0.1 or not. When you add (sum)
these the TRUE is automatically translated into 1 and FALSE automatically set to 0, by
which the desired count is available, and divided by the total number of simulations
k by mean().

Note, that if you do this yourself without using the same seed value you will not
get exactly the same result. It is clear that this simulation uncertainty is something
we must deal with in practice. The size of this will depend on the situation and
on the number of simulations k. We can always get a first idea of it in a specific
situation simply by repeating the calculation a few times and note how it varies.
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Indeed, one could then formalize such an investigation and repeat the simulation
many times, to get an evaluation of the simulation uncertainty. We will not pursue
this further here. When the target of the computation is in fact a probability, as in the
latter example here, you can alternatively use standard binomial statistics, which is
covered in Chapter 2 and Chapter 7. For example, with k = 100000 the uncertainty

for a calculated proportion of around 0.044 is given by:
√

0.044(1−0.044)
100000 = 0.00065. Or

for example, with k = 10000000 the uncertainty is 0.000065. The result using such
a k was 0.0455 and because we’re a bit unlucky with the rounding position we can
in practice say that the exact result rounded to 3 decimal places are either 0.045 or
0.046. In this way, a calculation which is actually based on simulation is turned into
an exact one in the sense that rounded to 2 decimal places, the result is simply 0.05.

4.1.3 Propagation of error

Within chemistry and physics one may speak of measurement errors and how
measurement errors propagate/accumulate if we have more measurements and/or
use these measurements in subsequent formulas/calculations. First of all: The
basic way to ”measure an error”, that is, to quantify a measurement error is by
means of a standard deviation. As we know, the standard deviation expresses
the average deviation from the mean. It is clear it may happen that a measur-
ing instrument also on average measures wrongly (off the target). This is called
”bias”, but in the basic setting here, we assume that the instrument has no bias.

Hence, reformulated, an error propagation problem is a question about how
the standard deviation of some function of the measurements depends on the
standard deviations for the individual measurement: let X1, . . . , Xn be n mea-
surements with standard deviations (average measurement errors) σ1, . . . , σn.
As usual in this material, we assume that these measurement errors are inde-
pendent of each other. There are extensions of the formulas that can handle
dependencies, but we omit those here. We must then in a general formulation
be able to find

σ2
f (X1,...,Xn) = V( f (X1, . . . , Xn)). (4-1)
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Remark 4.2

[For the thoughtful reader: Measurement errors, errors and variances] Al-
though we motivate this entire treatment by the measurement error termi-
nology, often used in chemistry and physics, actually everything is valid
for any kind of errors, be it “time-to-time” production errors, or “substance-
to-substance” or “tube-to-tube” errors. What the relevant kind of er-
rors/variabilities are depends on the situation and may very well be mixed
together in applications. But, the point is that as long as we have a relevant
error variance, we can work with the concepts and tools here. It does not
have to have a “pure measurement error” interpretation.

Actually, we have already in this course seen the linear error propagation rule,
in Theorem in 2.56, which then can be restated here as

If f (X1, . . . , Xn) =
n

∑
i=1

aiXi, then σ2
f (X1,...,Xn) =

n

∑
i=1

a2
i σ2

i .

There is a more general non-linear extension of this, albeit theoretically only an
approximate result, which involves the partial derivative of the function f with
respect to the n variables:

Method 4.3 The non-linear approximative error propagation rule

If X1, . . . , Xn are independent random variables with variances σ2
1 , . . . , σ2

n
and f is a (potentially non-linear) function of n variables, then the variance
of the f -transformed variables can be approximated linearly by

σ2
f (X1,...,Xn) =

n

∑
i=1

(
∂ f
∂xi

)2

σ2
i , (4-2)

where ∂ f
∂xi

is the partial derivative of f with respect to the i’th variable

In practice one would have to insert the actual measurement values x1, . . . , xn
of X1, . . . , Xn in the partial derivatives to apply the formula in practice, see the
example below. This is a pretty powerful tool for the general finding of (ap-
proximate) uncertainties for complicated functions of many measurements or
for that matter: complex combinations of various statistical quantities. When
the formula is used for the latter, it is also in some contexts called the ”delta
rule” (which is mathematically speaking a so-called first-order (linear) Taylor
approximations to the non-linear function f ). We bring it forward here, because
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as an alternative to this approximate formula one could use simulation in the
following way:

Method 4.4 Non-linear error propagation by simulation

Assume we have actual measurements x1, . . . , xn with known/assumed er-
ror variances σ2

1 , . . . , σ2
n:

1. Simulate k outcomes of all n measurements from assumed error distri-
butions, e.g. N(xi, σ2

i ): X(j)
i , j = 1 . . . , k.

2. Calculate the standard deviation directly as the observed standard de-
viation of the k simulated values of f :

ssim
f (X1,...,Xn) =

√√√√ 1
k− 1

k

∑
j=1

( f j − f̄ )2, (4-3)

where

f j = f (X(j)
1 , . . . , X(j)

n ). (4-4)

Example 4.5

Let us continue the example with A = XY and X and Y defined as in the example
above. First of all note, that we already above used the simulation based error prop-
agation method, when we found the standard deviation to be 0.04957 based on the
simulation. To exemplify the approximate error propagation rule, we must find the
derivatives of the function f (x, y) = xy with respect to both x and y

∂ f
∂x

= y
∂ f
∂y

= x.

Assume, that we now have two specific measurements of X and Y, for example
x = 2.00 m and y = 3.00 m the error propagation law would provide the following
approximate calculation of the ”uncertainty error variance of the area result” 2.00 m ·
3.00 m = 6.00 m2, namely

σ2
A = y2 · 0.012 + x2 · 0.022 = 3.002 · 0.012 + 2.002 · 0.022 = 0.0025.

So, with the error propagation law we are managing a part of the challenge without
simulating. Actually, we are pretty close to be able to find the correct theortical
variance of A = XY using tools provided in this course. By the definition and the
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following fundamental relationship

V(X) = E(X− E(X))2 = E(X2)− E(X)2. (4-5)

So, one can actually deduce the variance of A theoretically, it is only necessary
to know in addition that for independent random variables: E(XY) = E(X) E(Y)
(which by the way then also tells us that E(A) = E(X) E(Y) = 6)

V(XY) = E
[
(XY)2]− E(XY)2

= E(X2) E(Y2)− E(X)2 E(Y)2

=
[
V(X) + E(X)2] [V(Y) + E(Y)2]− E(X)2 E(Y)2

= V(X) V(Y) + V(X) E(Y)2 + V(Y) E(X)2

= 0.012 · 0.022 + 0.012 · 32 + 0.022 · 22

= 0.00000004 + 0.0009 + 0.0016

= 0.00250004.

Note, how the approximate error propagation rule actually corresponds to the two
latter terms in the correct variance, while the first term – the product of the two
variances is ignored. Fortunately, this term is the smallest of the three in this case. It
does not always have to be like that. If you want to learn how to make a theoretical
derivation of the density function for A = XY then take a course in probability
calculation.

Note, how we in the example actually found the ”average error”, that is, the
error standard deviation by three different approaches:

1. The simulation based approach

2. The analytical, but approximate, error propagation method

3. A theoretical derivation

The simulation approach has a number of crucial advantages:

1. It offers a simple way to compute many other quantities than just the stan-
dard deviation (the theoretical derivations of such other quantities could
be much more complicated than what was shown for the variance here)

2. It offers a simple way to use any other distribution than the normal – if we
believe such better reflect reality

3. It does not rely on any linear approximations of the true non-linear rela-
tions
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4.2 The parametric bootstrap

4.2.1 Introduction

Generally, a confidence interval for an unknown parameter µ is a way to ex-
press uncertainty using the sampling distribution of µ̂ = x̄. Hence, we use a
distribution that expresses how our calculated value would vary from sample
to sample. And the sampling distribution is a theoretical consequence of the
original population distribution. As indicated, we have so far no method to do
this if we only have a small sample size (n < 30), and the data cannot be as-
sumed to follow a normal distribution. In principle there are two approaches
for solving this problem:

1. Find/identify/assume a different and more suitable distribution for the
population (”the system”)

2. Do not assume any distribution whatsoever

The simulation method called bootstrapping, which in practice is to simulate
many samples, exists in two versions that can handle either of these two chal-
lenges:

1. Parametric bootstrap: simulate multiple samples from the assumed distri-
bution.

2. Non-parametric bootstrap: simulate multiple samples directly from the
data.

Actually, the parametric bootstrap handles in addition the situation where data
could perhaps be normally distributed, but where the calculation of interest is
quite different than the average, for example, the coefficient of variation (stan-
dard deviation divided by average) or the median. This would be an example
of a non-linear function of data – thus not having a normal distribution nor a t-
distribution as a sampling distribution. So, the parametric bootstrap is basically
just an example of the use of simulation as a general calculation tool, as intro-
duced above. Both methods are hence very general and can be used in virtually
all contexts.

In this material we have met a few of such alternative continuous distributions,
e.g. the log-normal, uniform and exponential distributions. But if we think
about it, we have not (yet) been taught how to do any statistics (confidence
intervals and/or hypothesis testing) within an assumption of any of these. The
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parametric bootstrap is a way to do this without relying on theoretical deriva-
tions of everything. As for the theoretical variance deduction above, there are
indeed methods for doing such general theoretical derivations, which would
make us able to do statistics based on any kind of assumed distribution. The
most welknown, and in many ways also optimal, overall approach for this is
called maximum likelihood theory. The general theory and approach of maxi-
mum likelihood is not covered in this course, however it is good to know that,
in fact, all the methods we present are indeed also maximum likelihood meth-
ods assuming normal distributions for the population(s).

4.2.2 One-sample confidence interval for µ

Example 4.6

[Confidence interval for the exponential rate or mean] Assume that we observed the
following 10 call waiting times (in seconds) in a call center

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0.

If we model the waiting times using the exponential distribution, we can estimate
the mean as

µ̂ = x̄ = 26.08,

and hence the rate parameter λ = 1/β in the exponential distribution as (cf. 2.48)

λ̂ = 1/26.08 = 0.03834356.

However, what if we want a 95% confidence interval for either µ = β or λ? We
have not been tought the methods, that is, given any formulas for finding this. The
following few lines of R-code, a version of the simulation based error propagation
approach from above, will do the job for us:



Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 213

# Read the data
x <- c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0)
n <- length(x)
# Set the number of simulations
k <- 100000
# 1. Simulate 10 exponentials with the sample mean k times
simsamples <- replicate(k, rexp(10,1/26.08))
# 2. Compute the mean of the 10 simulated observations k times
simmeans <- apply(simsamples, 2, mean)
# 3. Find the two relevant quantiles of the k simulated means
quantile(simmeans, c(0.025, 0.975))

2.5% 97.5%
12.59 44.63

Explanation: replicate is a function that repeats the call to rexp(10,1/26.08), in
this case 100000 times and the results are collected in a 10× 100.000 matrix. Then
in a single call the 100.000 averages are calculated and subsequently the relevant
quantiles found.

So the 95%-confidence interval for the mean µ is (in seconds)

[12.6, 44.6].

And for the rate λ = 1/µ it can be found by a direct transformation (remember that
the quantiles are ’invariant’ to monotonic transformations, c.f. Chapter 3)

[1/44.6, 1/12.6]⇔ [0.022, 0.0794].

The simulated sampling distribution of means that we use for our statistical analysis
can be seen with the histogram:
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hist(simmeans, col="blue", nclass=30, cex.main=0.8)
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We see clearly that the sampling distribution in this case is not a normal nor a t-
distribution: it has a clear right skewed shape. So n = 10 is not quite large enough
for this exponential distribution to make the Central Limit Theorem take over.

The general method which we have used in the example above is given below
as Method 4.7.

4.2.3 One-sample confidence interval for any feature assuming
any distribution

We saw in the example above that we could easily find a confidence interval for
the rate λ = 1/µ assuming an exponential distribution. This was so, since the
rate was a simple (monotonic) transformation of the mean, and the quantiles
of simulated rates would then be the same simple transformation of the quan-
tiles of the simulated means. However, what if we are interested in something
not expressed as a simple function of the mean, for instance the median, the
coefficient of variation, the quartiles, Q1 or Q3, the IQR=Q3 − Q1 or any other
quantile? Well, a very small adaptation of the method above would make that
possible for us. To express that we now cover any kind of statistic one could
think of, we use the general notation, the Greek letter θ, for a general feature
of the distribution. For instance, θ could be the true median of the population
distribution, and then θ̂ is the sample median computed from the sample taken.
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Method 4.7 Confidence interval for any feature θ by parametric
bootstrap

Assume we have actual observations x1, . . . , xn and assume that they stem
from some probability distribution with density (pdf) f :

1. Simulate k samples of n observations from the assumed distribution f
where the mean is set to x̄ a

2. Calculate the statistic θ̂ in each of the k samples θ̂∗1 , . . . , θ̂∗k

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

a(Footnote: And otherwise chosen to match the data as good as possible: some distributions
have more than just a single mean related parameter, e.g. the normal or the log-normal. For these
one should use a distribution with a variance that matches the sample variance of the data. Even
more generally the approach would be to match the chosen distribution to the data by the so-called
maximum likelihood approach)

Please note again, that you can simply substitute the θ with whatever statistics
that you are working with. This then also shows that the method box includes
the often occurring situation, where a confidence interval for the mean µ is the
aim.

Example 4.8 Confidence interval for the median assuming an ex-
ponential distribution

Let us look at the exponential data from the previous section and find the confidence
interval for the median:
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# Load the data
x <- c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0)
n <- length(x)
# Set the number of simulations
k <- 100000
# 1. Simulate k samples of n=10 exponentials with the sample mean
simsamples <- replicate(k, rexp(n,1/26.08))
# 2. Compute the median of the n=10 simulated observations k times:
simmedians <- apply(simsamples, 2, median)
# 3. Find the two relevant quantiles of the k simulated medians:
quantile(simmedians, c(0.025, 0.975))

2.5% 97.5%
7.038 38.465

The simulated sampling distribution of medians that we use for our statistical anal-
ysis can be studied by the histogram:

hist(simmedians, col="blue", nclass=30, cex.main=0.8)

Histogram of simmedians
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We see again clearly that the sampling distribution in this case is not a normal nor a
t-distribution: it has a clear right skewed shape.
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Example 4.9

[Confidence interval for Q3 assuming a normal distribution] Let us look at the
heights data from the previous chapters and find the 99% confidence interval for
the upper quartile: (Please note that you will find NO theory nor analytically ex-
pressed method boxes in the material to solve this challenge). There is one little
extra challenge for us here, since with as well the mean as the median there were
directly applicable R-functions to do these sample computations for us, namely the
R-functions mean and median. The upper quartile Q3 does not as such have its own R-
function but it comes as part of the result of e.g. the summary function or the quantile
function. However, in one little line of R-code, we could make such a Q3-function
ourselves, e.g. by:

Q3 <- function(x){ quantile(x, 0.75) }

And now it goes exactly as before:

# load in the data
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
n <- length(x)
# Set the number of simulations:

k <- 100000
# 1. Simulate k samples of n=10 normals with the sample mean and
# variance:
simsamples <- replicate(k, rnorm(n, mean(x), sd(x)))
# 2. Compute the Q3 of the n=10 simulated observations k times:
simQ3 <- apply(simsamples, 2, Q3)
# 3. Find the two relevant quantiles of the k simulated medians:
quantile(simQ3, c(0.005, 0.995))

0.5% 99.5%
172.8 198.0

The simulated sampling distribution of upper quartiles that we use for our statistical
analysis can be studied by the histogram:
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hist(simQ3, col="blue", cex.main=0.8)

Histogram of simQ3
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In this case the Q3 of n = 10 samples of a normal distribution appear to be rather
symmetric and nicely distributed, so maybe one could in fact use the normal distri-
bution, also as an approximate sampling distribution in this case.

4.2.4 Two-sample confidence intervals assuming any distributions

In this section we extend what we learned in the two previous sections to the
case where the focus is a comparison between two (independent) samples. We
present a method box which is the natural extensions of the method box from
above, comparing any kind of feature (hence including the mean comparison):
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Method 4.10 Two-sample confidence interval for any feature com-
parison θ1 − θ2 by parametric bootstrap

Assume we have actual observations x1, . . . , xn1 and y1, . . . , yn2 and assume
that they stem from some probability distributions with density f1 and f2:

1. Simulate k sets of 2 samples of n1 and n2 observations from the as-
sumed distributions setting the means to µ̂1 = x̄ and µ̂2 = ȳ, respec-
tively a

2. Calculate the difference between the features in each of the k samples
θ̂∗x1 − θ̂∗y1, . . . , θ̂∗xk − θ̂∗yk

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval[
q∗100(α/2)%, q∗100(1−α/2)%

]

a(Footnote: And otherwise chosen to match the data as good as possible: some distributions
have more than just a single mean related parameter, e.g. the normal or the log-normal. For these
one should use a distribution with a variance that matches the sample variance of the data. Even
more generally the approach would be to match the chosen distribution to the data by the so-called
maximum likelihood approach)

Example 4.11

[CI for the difference of two means from exponential distributed data] Let us look
at the exponential data from the previous section and compare that with a second
sample of n = 12 observations from another day at the call center

9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2, 18.0, 62.4, 10.3.

Let us quantify the difference between the two days and conclude whether the call
rates and/or means are any different on the two days:
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# Read the data
x <- c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0)
y <- c(9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2, 18.0,

62.4, 10.3)
n1 <- length(x)
n2 <- length(y)
# Set the number of simulations
k <- 100000

# 1. Simulate k samples of each n1=10 and n2=12 exponentials
# with the sample means
simXsamples <- replicate(k, rexp(n1,1/mean(x)))
simYsamples <- replicate(k, rexp(n2,1/mean(y)))
# 2. Compute the difference between the simulated means k times
simDifmeans <- apply(simXsamples,2,mean) - apply(simYsamples,2,mean)
# 3. Find the two relevant quantiles of the k simulated differences
# in sample means
quantile(simDifmeans, c(0.025, 0.975), cex.main=0.8)

2.5% 97.5%
-40.74 14.12

Thus, although the mean waiting time was higher on the second day (ȳ = 38.24 s),
the range of acceptable values (the confidence interval) for the difference in means
is [−40.7, 14.1] – a pretty large range and including 0, so we have no evidence of the
claim that the two days had different mean waiting times (nor call rates then) based
on the current data.

Let us, as in previous examples take a look at the distribution of the simulated sam-
ples. In a way, we do not really need this for doing the analysis, but just out of
curiosity, and for the future it may give a idea of how far from normality the rele-
vant sampling distribution really is:
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hist(simDifmeans, col="blue", nclass=25, cex.main=0.8)

Histogram of simDifmeans
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In this case the differences of means of exponential distributions appears to be rather
symmetric and nicely distributed, so maybe one could in fact use the normal distri-
bution, also as an approximate sampling distribution in this case.

Example 4.12

[Nutrition study: comparing medians assuming normal distributions] Let us com-
pare the median energy levels from the two-sample nutrition data from Example
3.46. And let us do this still assuming the normal distribution as we also assumed
in the previous example. First we read in the data:

# Read the data
xA <- c(7.53, 7.48, 8.08, 8.09, 10.15, 8.4, 10.88, 6.13, 7.9)
xB <- c(9.21, 11.51, 12.79, 11.85, 9.97, 8.79, 9.69, 9.68, 9.19)
nA <- length(xA)
nB <- length(xB)

Then we do the two-sample median comparison by the parametric, normal based,
bootstrap:
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# Set the number of simulations
k <- 100000
# 1. Simulate k samples of each nA=9 and nB=9 exponentials with the
# sample means and standard deviations
simAsamples <- replicate(k, rnorm(nA, mean(xA), sd(xA)))
simBsamples <- replicate(k, rnorm(nB, mean(xB), sd(xB)))

# 2. Compute the difference between the simulated medians k times
simDifmedians <- apply(simAsamples, 2, median) - apply(simBsamples, 2,

median)
# 3. Find the two relevant quantiles of the k simulated differences
# of means
quantile(simDifmedians, c(0.025, 0.975))

2.5% 97.5%
-3.6014 -0.3981

Thus, we accept that the difference between the two medians is somewhere between
0.4 and 3.6, and confirming the group difference that we also found in the means, as
the 0 is not included in the interval.

Note, how the only differences in the R code compared to the previous bootstrap-
ping example: the calls to the rexp-function into calls to the rnorm-function and
substituting mean with median.

Remark 4.13

[Hypothesis testing by simulation based confidence intervals] We have also
seen that even though the simulation method boxes given are providing
confidence intervals: we can also use this for hypothesis testing, by using
the basic relation between hypothesis testing and confidence intervals. A
confidence interval includes the ’acceptable’ values, and values outside the
confidence interval are the ’rejectable’ values.
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4.3 The non-parametric bootstrap

4.3.1 Introduction

In the introduction to the parametric bootstrap section above it was discussed
that another approach instead of finding the ’right’ distribution to use is to not
assume any distribution at all. This can be done, and a way to do this simula-
tion based is called the non-parametric bootstrap and is presented in this section.
The section is structured as the parametric bootstrap section above – includ-
ing the similar subsections and similar method boxes. So there will be two
method boxes in this section: one for the one-sample analysis and one for the
two-sample analysis.

In fact, the non-parametric approach could be seen as the parametric approach
but substituting the density/distribution used for the simulation by the ob-
served distribution of the data, that is, the empirical cumulative distribution
function (ecdf), cf. Chapter 1. In practice this is carried out by (re)-sampling the
data we have again and again: To get the sampling distribution of the mean (or
any other feature) based on the n observations that we have in our given sam-
ple, we simply again and again take new samples with n observations from the
one we have. This is done ”with replacement” such that the ”new” samples,
from now on called the bootstrap samples would contain some of the original
observations in duplicates (or more) and others will not be there.

4.3.2 One-sample confidence interval for µ

We have the sample: x1, . . . , xn.

The 100(1− α)% confidence interval for µ determined by the non-parametric
bootstrap is first exemplified:
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Example 4.14

[Women’s cigarette consumption] In a study women’s cigarette consumption before
and after giving birth is explored. The following observations of the number of
smoked cigarettes per day were observed:

before after before after
8 5 13 15

24 11 15 19
7 0 11 12

20 15 22 0
6 0 15 6

20 20

This is a typical paired t-test setup, as discussed in Section 3.2.3, which then was
handled by finding the 11 differences and thus transforming it into a one-sample
setup. First we read the observations into R and calculate the differences by:

# Read and calculate the differences for each woman before and after
x1 <- c(8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15)
x2 <- c(5, 11, 0, 15, 0, 20, 15, 19, 12, 0, 6)
dif <- x1-x2
dif

[1] 3 13 7 5 6 0 -2 -4 -1 22 9

There is a random-sampling function in R (which again is based on a uniform ran-
dom number generator): sample. Eg. you can get 5 repeated samples (with replace-
ment - replace=TRUE) by:

t(replicate(5, sample(dif, replace=TRUE)))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] -1 3 9 6 0 9 5 -1 -4 -4 -2
[2,] 6 -2 -4 5 5 -1 9 5 -2 -2 5
[3,] -4 -2 -2 3 -2 -2 -1 5 5 13 -4
[4,] 3 -2 -2 -4 7 9 -4 -4 -4 5 9
[5,] 6 -4 0 5 0 -2 9 -4 -2 3 5

Explanation: replicate is a function that repeats the call to sample - in this case 5
times. The function t simply transposes the matrix of numbers, making it 5× 11
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instead of 11× 5 (only used for showing the figures row-wise in slightly fewer lines
than otherwise necessary)

One can then run the following to get a 95% confidence interval for µ based on
k = 100000:

# Number of simulated samples
k <- 100000
# Simulate
simsamples <- replicate(k, sample(dif, replace=TRUE))
# Calculate the mean of each simulated sample
simmeans <- apply(simsamples, 2, mean)
# Quantiles of the differences gives the CI
quantile(simmeans, c(0.025,0.975))

2.5% 97.5%
1.364 9.727

Explanation: The sample function is called 100.000 times and the results collected in
an 11× 100.000 matrix. Then in a single call the 100.000 averages are calculated and
subsequently the relevant quantiles found.

Note, that we use the similar three steps as above for the parametric bootstrap, with
the only difference that the simulations are carried out by the re-sampling the given
data rather than from some probability distribution.

4.3.3 One-sample confidence interval for any feature

What we have just done can be more generally expressed as follows:
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Method 4.15 Confidence interval for any feature θ by non-
parametric bootstrap

Assume we have actual observations x1, . . . , xn:

1. Simulate k samples of size n by randomly sampling among the avail-
able data (with replacement)

2. Calculate the statistic θ̂ in each of the k samples θ̂∗1 , . . . , θ̂∗k

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

Example 4.16

Let us find the 95% confidence interval for the median cigarette consumption change
in the example from above:

# The 95% CI for the median change
k <- 100000
simsamples <- replicate(k, sample(dif, replace = TRUE))
simmedians <- apply(simsamples, 2, median)
quantile(simmedians, c(0.025,0.975))

2.5% 97.5%
-1 9

4.3.4 Two-sample confidence intervals

We now have two random samples: x1, . . . , xn1 and y1, . . . , yn2 . The 100(1− α)%
confidence interval for θ1 − θ2 determined by the non-parametric bootstrap is
defined as:
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Method 4.17 Two-sample confidence interval for θ1 − θ2 by non-
parametric bootstrap

Assume we have actual observations x1, . . . , xn1 and y1, . . . , yn2 :

1. Simulate k sets of 2 samples of n1 and n2 observations from the respec-
tive groups (with replacement)

2. Calculate the difference between the features in each of the k samples
θ̂∗x1 − θ̂∗y1, . . . , θ̂∗xk − θ̂∗yk

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

Example 4.18

[Teeth and bottle] In a study it was explored whether children who received milk
from bottle as a child had worse or better teeth health conditions than those who
had not received milk from the bottle. For 19 randomly selected children it was
recorded when they had their first incident of caries:

bottle age bottle age bottle Age
no 9 no 10 yes 16
yes 14 no 8 yes 14
yes 15 no 6 yes 9
no 10 yes 12 no 12
no 12 yes 13 yes 12
no 6 no 20
yes 19 yes 13

One can then run the following to obtain a 95 % confidence interval for µ1−µ2 based
on k = 100000:
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# Reading in "no bottle" group
x <- c(9, 10, 12, 6, 10, 8, 6, 20, 12)
# Reading in "yes bottle" group
y <- c(14,15,19,12,13,13,16,14,9,12)

# Number of simulations
k <- 100000
# Simulate each sample k times
simxsamples <- replicate(k, sample(x, replace=TRUE))
simysamples <- replicate(k, sample(y, replace=TRUE))
# Calculate the sample mean differences
simmeandifs <- apply(simxsamples,2,mean) - apply(simysamples,2,mean)
# Quantiles of the differences gives the CI
quantile(simmeandifs, c(0.025,0.975))

2.5% 97.5%
-6.2222 -0.1444

Example 4.19

Let us make a 99% confidence interval for the difference of medians between the
two groups in the tooth health example:

# CI for the median differences
simmediandifs <- apply(simxsamples,2,median)-apply(simysamples,2,median)
quantile(simmediandifs, c(0.005,0.995))

0.5% 99.5%
-8 0
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Remark 4.20

[Warning: Bootstrapping may not always work well for small sample sizes!]
The bootstrapping idea was presented here rather enthusiastically as an al-
most magic method that can do everything for us in all cases. This is not
the case. Some statistics are more easily bootstrapped than others and gen-
erally non-parametric bootstrap will not work well for small samples. The
inherent lack of information with small samples cannot be removed by any
magic trick. Also, there are more conceptually difficult aspects of bootstrap-
ping for various purposes to improve on some of these limitations, see the
next section. Some of the "naive bootstrap" CI interval examples introduced
in this chapter is likely to not have extremely good properties – the coverage
percentages might not in all cases be exactly at the aimed nominal levels.
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4.4 Bootstrapping – a further perspective

This section is not part of the syllabus, but can be seen as providing some op-
tional perspectives of this very versatile method. First of all there are actually
other principles of constructing the bootstrap confidence intervals than the one
presented here. What we have used is the so-called percentile method. Other
methods to come from the non-parametric bootstrapped samples to a confi-
dence interval are called the bootstrap-t or studentized bootstrap and Bias Cor-
rected Accelerated confidence intervals. These are often considered superior to
the straightforward percentile method presented above.

All of these bootstrap based confidence interval methods are also available in
specific bootstrap functions and packages in R. There are two major bootstrap
packages in R: the boot and the bootstrap packages. The former is the one
recommended by the QuickR-website: (Adv. Stats, Bootstrapping) http://www.
statmethods.net/advstats/bootstrapping.html.

The other package called bootstrap includes a function (also) called bootstrap.
To e.g. use this one, first install this package, e.g. by:

# Install the bootstrap package
install.packages("bootstrap")

Example 4.21

[Teeth and bottle] Now the calculation can be performed in a single call:

# Calculate the 95% CI for the Teeth and bottle example above
library(bootstrap)
quantile(bootstrap(dif,k,mean)$thetastar, c(0.025,0.975))

2.5% 97.5%
1.364 9.727

These bootstrap packages are advantageous to use when looking for confidence
intervals for more complicated functions of data.

http://www.statmethods.net/advstats/bootstrapping.html
http://www.statmethods.net/advstats/bootstrapping.html
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4.4.1 Non-parametric bootstrapping with the boot-package

Now, we will show how to use the boot-package for more general non-parametric
bootstrapping than described so far. Both the bootstrap and the boot packages
require that the statistics that are bootstrapped in more general situations are
on a specific functional form in R. The nice thing about the bootstrap pack-
age is that it may handle the simple cases without this little extra complica-
tion, whereas the boot package requires this for all applications, also the simple
ones. However, then the boot-package has a number of other good features that
makes it a good choice, and the point is, that for the applications coming now,
the additional complexity would be needed also for the bootstrap package. Let
us begin with a simple example that is already covered by our methods up to
now:

Example 4.22

[Bootstrapping the mean µ by the boot-package] We will use again the women’s
cigarette consumption data:

# Read and calculate the differences for each woman before and after
x1 <- c(8,24,7,20,6,20,13,15,11,22,15)
x2 <- c(5,11,0,15,0,20,15,19,12,0,6)
dif <- x1-x2

Our aim is to find a 95%-confidence interval for the mean difference. The additional
complexity mentioned is that we cannot just use the mean function as it comes, we
need to re-define it on a specific function form, where the indices enters the function:

# Define function for calculating the mean of the d indexes
samplemean <- function(x, d){ mean(x[d]) }

This is a version of the mean function, where we explicitly have to specify which of
the available observations should be used in the computation of the mean. Let us
check the result of that:
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# Call the new function
mean(dif)

[1] 5.273

samplemean(dif,1:11)

[1] 5.273

samplemean(dif,c(1,3))

[1] 5

dif

[1] 3 13 7 5 6 0 -2 -4 -1 22 9

dif[c(1,3)]

[1] 3 7

mean(dif[c(1,3)])

[1] 5

We see that samplemean(dif,c(1,3)) means that we compute the mean of obser-
vation numbers 1 and 3. Now we can use the boot package (to do what we so far
already were able to using methods from previous sections) and firstly we look at
the bootstrap distribution:

# Load the boot package
library(boot)

# Non-parametric bootstrap of the mean difference:
k <- 10000
meandifboot <- boot(dif, samplemean, k)
plot(meandifboot)
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The actual confidence interval corresponding then to Method 4.15 can then be ex-
tracted using the dedicated R-function boot.ci as:

# Percentile bootstrap CI:
boot.ci(meandifboot, type="perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = meandifboot, type = "perc")

Intervals :
Level Percentile
95% ( 1.364, 9.909 )
Calculations and Intervals on Original Scale

One of the nice features of the boot-package is that we can now easily get instead the
so-called Bias Corrected and Accelerated (bca) confidence interval simply by writing
type="bca":
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# Bias Corrected Accelerated CI:
boot.ci(meandifboot, type="bca")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = meandifboot, type = "bca")

Intervals :
Level BCa
95% ( 1.636, 10.455 )
Calculations and Intervals on Original Scale

And now we can apply this bca-method to any case, e.g. bootstrapping the x1 me-
dian:

# Define a function for taking the median in the needed format
samplemedian <- function(x, d) {

return(median(x[d]))
}
# Non-parametric bootstrap of the x1 median
b <- boot(x1,samplemedian,k)
boot.ci(b, type="bca")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = b, type = "bca")

Intervals :
Level BCa
95% ( 7, 20 )
Calculations and Intervals on Original Scale

Or the coefficient of variation for the difference:
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# Non-parametric bootstrap of the Dif coef. of var
samplecoefvar <- function(x, d) {

return(sd(x[d])/mean(x[d]))
}
#
b <- boot(dif,samplecoefvar,k)
boot.ci(b, type="bca")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9996 bootstrap replicates

CALL :
boot.ci(boot.out = b, type = "bca")

Intervals :
Level BCa
95% ( 0.823, 5.737 )
Calculations and Intervals on Original Scale

Now we will show how we can work directly on data frames, which in real
applications always will be how we have data available. Also, we will show
how we can bootstrap statistics that depend on more than a single input vari-
able. The first example we will use is that of finding a confidence interval for a
sample correlation coefficient, cf. Chapter 1 and Chapter 5. If you read through
Section 5.6, you will see that no formula is given for this confidence interval.
Actually, this is not so easily found, and only approximate explicit solutions
can be found for this. We illustrate it on some data that we produce(simulate)
ourselves and then store in a data frame:
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Example 4.23

# Example with data frame and two variables

# Making our own data for the example - into a data frame:
x <- runif(100)
y <- x + 2*runif(100)
D <- data.frame(x, y)
head(D)

x y
1 0.73368 1.8412
2 0.64694 1.6278
3 0.77794 0.9156
4 0.57139 1.4181
5 0.06502 1.0337
6 0.71794 1.9531

plot(D)
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cor(D$x,D$y)

[1] 0.3842

Then we make a version of the correlation function on the right form, where the
entire data frame is taken as the input to the function (together with the index):
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# The correlation function on the right form:
mycor <- function(D, d) {

E <- D[d,]
return(cor(E$x, E$y))

}

# Check:
mycor(D, 1:100)

[1] 0.3842

mycor(D, 1:15)

[1] 0.4144

The E selects the chosen observations from the data frame D, and then in the compu-
tations we use the variables needed from the data frame (think about how this then
can easily be extended to using any number of variables in the data frame). And we
can now do the actual bootstrap:

# Doing the bootstrap on the data frame:
b <- boot(D, mycor, 10000)
boot.ci(b, type="bca")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = b, type = "bca")

Intervals :
Level BCa
95% ( 0.2118, 0.5341 )
Calculations and Intervals on Original Scale

Our last example will show a way to bootstrap output from linear models based
on bootstrapping the entire rows of the data frame. (Other bootstrap principles
exist for linear models, e.g. bootstrapping only residuals).
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Example 4.24

We will show how to find the confidence interval for the percentage of explained
variation in a multiple linear regression (MLR - covered in Chapter 6). We use the
data set mtcars from the boot package:

# Bootstrapping an R-Squared from an MLR using
# the data set mtcars from the boot package:
# (And showing how to send EXTRA stuff to your function)

# function to obtain R-Squared from the data
# AND working for ANY model fit you want!!

rsq <- function(formula, data, d) {
fit <- lm(formula, data=data[d,])
return(summary(fit)$r.square)

}

# Bootstrapping with 1000 replications
b <- boot(mtcars, rsq, 1000, formula=mpg~wt+disp)
plot(b)
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boot.ci(b, type="bca")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = b, type = "bca")

Intervals :
Level BCa
95% ( 0.6271, 0.8549 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable
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4.5 Exercises

Exercise 4.1 Reliability: System lifetime (simulation as a computa-
tion tool)

A system consists of three components A, B and C serially connected, such that
A is positioned before B, which is again positioned before C. The system will
be functioning only so long as A, B and C are all functioning. The lifetime in
months of the three components are assumed to follow exponential distribu-
tions with means: 2 months, 3 months and 5 months, respectively (hence there
are three random variables, XA, XB and XC with exponential distributions with
λA = 1/2, λB = 1/3 and λC = 1/5 resp.). A little R-help: You will probably
need (or at least it would help) to put three variables together to make e.g. a
k× 3-matrix – this can be done by the cbind function:

x <- cbind(xA,xB,xC)

And just as an example, remember from the examples in the chapter that the
way to easily compute e.g. the mean of the three values for each of all the k
rows of this matrix is:

simmeans <- apply(x, 1, mean)

a) Generate, by simulation, a large number (at least 1000 – go for 10000 or
100000 if your computer is up for it) of system lifetimes (hint: consider
how the random variable Y = System lifetime is a function of the three
X-variables: is it the sum, the mean, the median, the minimum, the maxi-
mum, the range or something even different?).

b) Estimate the mean system lifetime.

c) Estimate the standard deviation of system lifetimes.
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d) Estimate the probability that the system fails within 1 month.

e) Estimate the median system lifetime

f) Estimate the 10th percentile of system lifetimes

g) What seems to be the distribution of system lifetimes? (histogram etc)

Exercise 4.2 Basic bootstrap CI

(Can be handled without using R) The following measurements were given for
the cylindrical compressive strength (in MPa) for 11 prestressed concrete beams:

38.43, 38.43, 38.39, 38.83, 38.45, 38.35, 38.43, 38.31, 38.32, 38.48, 38.50.

1000 bootstrap samples (each sample hence consisting of 11 measurements)
were generated from these data, and the 1000 bootstrap means were arranged
on order. Refer to the smallest as x̄∗(1), the second smallest as x̄∗(2) and so on,
with the largest being x̄∗(1000). Assume that

x̄∗(25) = 38.3818,

x̄∗(26) = 38.3818,

x̄∗(50) = 38.3909,

x̄∗(51) = 38.3918,

x̄∗(950) = 38.5218,

x̄∗(951) = 38.5236,

x̄∗(975) = 38.5382,

x̄∗(976) = 38.5391.
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a) Compute a 95% bootstrap confidence interval for the mean compressive
strength.

b) Compute a 90% bootstrap confidence interval for the mean compressive
strength.

Exercise 4.3 Various bootstrap CIs

Consider the data from the exercise above. These data are entered into R as:

x <- c(38.43, 38.43, 38.39, 38.83, 38.45, 38.35,
38.43, 38.31, 38.32, 38.48, 38.50)

Now generate k = 1000 bootstrap samples and compute the 1000 means (go
higher if your computer is fine with it)

a) What are the 2.5%, and 97.5% quantiles (so what is the 95% confidence
interval for µ without assuming any distribution)?

b) Find the 95% confidence interval for µ by the parametric bootstrap as-
suming the normal distribution for the observations. Compare with the
classical analytic approach based on the t-distribution from Chapter 2.

c) Find the 95% confidence interval for µ by the parametric bootstrap as-
suming the log-normal distribution for the observations. (Help: To use
the rlnorm function to simulate the log-normal distribution, we face the
challenge that we need to specify the mean and standard deviation on the
log-scale and not on the raw scale, so compute mean and standard devia-
tion for log-transformed data for this R-function)
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d) Find the 95% confidence interval for the lower quartile Q1 by the paramet-
ric bootstrap assuming the normal distribution for the observations.

e) Find the 95% confidence interval for the lower quartile Q1 by the non-
parametric bootstrap (so without any distributional assumptions)

Exercise 4.4 Two-sample TV data

A TV producer had 20 consumers evaluate the quality of two different TV flat
screens - 10 consumers for each screen. A scale from 1 (worst) up to 5 (best)
were used and the following results were obtained:

TV screen 1 TV screen 2
1 3
2 4
1 2
3 4
2 2
1 3
2 2
3 4
1 3
1 2

a) Compare the two means without assuming any distribution for the two
samples (non-parametric bootstrap confidence interval and relevant hy-
pothesis test interpretation).

b) Compare the two means assuming normal distributions for the two sam-
ples - without using simulations (or rather: assuming/hoping that the
sample sizes are large enough to make the results approximately valid).
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c) Compare the two means assuming normal distributions for the two sam-
ples - simulation based (parametric bootstrap confidence interval and rel-
evant hypothesis test interpretation – in spite of the obviously wrong as-
sumption).

Exercise 4.5 Non-linear error propagation

The pressure P, and the volume V of one mole of an ideal gas are related by
the equation PV = 8.31T, when P is measured in kilopascals, T is measured in
kelvins, and V is measured in liters.

a) Assume that P is measured to be 240.48 kPa and V to be 9.987 L with
known measurement errors (given as standard deviations): 0.03 kPa and
0.002 L. Estimate T and find the uncertainty in the estimate.

b) Assume that P is measured to be 240.48kPa and T to be 289.12K with
known measurement errors (given as standard deviations): 0.03kPa and
0.02K. Estimate V and find the uncertainty in the estimate.

c) Assume that V is measured to be 9.987 L and T to be 289.12 K with known
measurement errors (given as standard deviations): 0.002 L and 0.02 K.
Estimate P and find the uncertainty in the estimate.

d) Try to answer one or more of these questions by simulation (assume that
the errors are normally distributed).
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Chapter 5

Simple Linear regression

5.1 Linear regression and least squares

In engineering applications we are often faced with the problem of determining
the best model of some outcome given a known input

y = f (x), (5-1)

hence x is the input and the function f is the model. The task is now to find
the best model given the input variables (x) and the outcome (y). The simplest
model, besides just a mean value (covered in Chapters 3 and 4), would be a
model where f is a linear function of x

y = β0 + β1x. (5-2)

When the outcome y is the result of some experiment, the model will not be
perfect, and we need to add an error term

Yi = β0 + β1xi + εi, i = {1, . . . , n}, (5-3)

where εi is called the error and is a (independent) random variable with expec-
tation equal zero (i.e. the mean E(εi) = 0 and some variance (V(εi) = σ2). The
statistical interpretation of (5-2) is therefore that it expresses the expected value
of the outcome

E(Yi) = β0 + β1xi, (5-4)

also called the model prediction.
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It is of course a very unusual situation that we actually know the values of
β0 and β1 and we will have to rely on estimates based on some observations
(y1, . . . , yn). As usual we express this by putting a “hat” on the parameters

ŷi = β̂0 + β̂1xi, (5-5)

meaning that we expect or predict ŷi (in mean or average) under the conditions
given by xi.

Example 5.1

A car manufacturer wants to find the relation between speed and fuel consumption,
to do so she sets up the following model

Yi = β0 + β1xi + ε i, (5-6)

here E(Yi) is the expected fuel consumption at the speed xi. Further, there will be
uncontrollable variations, e.g. due to differences in weather condition, but also non-
linear effects not included in the model might be present. These variations are cap-
tured by the ε i’s. We see that speed is something we control here, and we then
observe the outcome (here fuel consumption), at different experimental conditions
(speeds).

In this chapter we will deal with estimation and inference of β0, β1, and predic-
tion of Yi given xi. At some point we will have realizations (or observations) of
the outcome, in this case we write

yi = β0 + β1xi + ei, i = {1, . . . , n}. (5-7)

Now yi is a realization and ei is the deviation between the model prediction and
the actual observation: a realization of the error εi, it is called a residual. Clearly,
we want the residuals to be small in some sense, the usual choice (and the one
treated in this chapter) is in the Residual Sum of Squares (RSS) sense, i.e. we
want to minimize the residual sum of squares

RSS(β0, β1) =
n

∑
i=1

ε2
i =

n

∑
i=1

(Yi − (β0 + β1xi))2, (5-8)

where we have emphasized that the residual sum of squares is a function of the
parameters (β0, β1). The parameter estimates (β̂0, β̂1) are the values of β0 and
β1 which minimize RSS. Note, that we use Yi and εi rather than the observed
values (yi and ei), this is to emphasize that the estimators are random variables,
in actual calculations after the experiments are carried out we will just replace
Yi with yi and εi with ei. Figure 5.1 sketches the linear regression problem.
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Figure 5.1: Conceptual diagram for the simple linear regression problem.

Remark 5.2 Estimates and estimators

In (5-8) the RSS is a function of the random variables (Yi), thus making RSS
a random variable. If we replace Yi with the realizations yi then RSS is also
a realization.
In this chapter the result of optimizing RSS with respect to β0 and β1 will
be denoted β̂0 and β̂1. Sometimes β̂0 and β̂1 will be functions of Yi and
sometimes they will be functions of the realizations yi, they are referred to
as:

1. Estimators: before the experiment has been carried out, then β̂0 and
β̂1 are functions of Yi and they are also random variables, and we call
them estimators.

2. Estimates: after the experiment had been carried out, then β̂0 and β̂1
are functions of yi and they are also realizations of random variables,
and we call them estimates.
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Remark 5.3 Two types of examples

In this chapter we will use two types of examples, one is labelled “Simula-
tion”, which are simulation studies intended to illustrate the consequences
of theorems and general results. While the other type of examples (not la-
belled “Simulation”), are intended to illustrate the use of the theorems on
pratical examples.

5.2 Parameter estimates and estimators

When β̂0 and β̂1 is a result of minimizing the function in Equation (5-8), we
refer to the estimators as least squares estimators. The least squares estimators are
given in the following theorem:

Theorem 5.4 Least squares estimators

The least squares estimators of β0 and β1 are given by

β̂1 = ∑n
i=1(Yi − Ȳ)(xi − x̄)

Sxx
, (5-9)

β̂0 = Ȳ− β̂1x̄, (5-10)

where Sxx = ∑n
i=1(xi − x̄)2.

As we can see above the estimators (β̂1 and β̂2) are functions of random vari-
ables (Yi and Ȳ), and thus the estimators are themselves random variables. We
can therefore talk about the expectation, variance and distribution of the esti-
mators. In analyses with data we will of course only see realizations of Yi and
we just replace Yi and Ȳ with their realizations yi and ȳ. In this case we speak
about estimates of β0 and β1.

Before we go on with the proof of Theorem 5.4, the application of the theorem
is illustrated in the following example:
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Example 5.5 Student height and weight

Consider the student height and weight data presented in Chapter 1,

Heights (xi) 168 161 167 179 184 166 198 187 191 179
Weights (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9

We want to find the best least squares regression line for these points, this is equiv-
alent to calculating the least squares estimates of β̂0 and β̂1.

We start by finding the two sample means

x̄ = 1
10

(168 + 161 + . . . + 179) = 178,

ȳ = 1
10

(65.5 + 58.3 + . . . + 78.9) = 78.11.

The value of Sxx is calculated by

Sxx = (168− 178)2 + . . . + (179− 178)2 = 1342.

We can now calculate β̂1 as

β̂1 = 1
1342

(
(65.5− 78.11)(168− 179) + . . . + (79.9− 78.11)(179− 178)

)
= 1.11,

and finally, we can calculate β̂0 as

β̂0 = 78.11− 1.11 · 178 = −120.

In R the calculation above can be done by:

# Read data
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)

# Calculate averages
xbar <- mean(x)
ybar <- mean(y)

# Parameters estimates
Sxx <- sum((x - xbar)^2)
beta1hat <- sum((x - xbar)*(y - ybar)) / Sxx
beta0hat <- ybar - beta1hat * xbar

Rather than using “manual” calculations in R, we can use the build in R-function lm
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D <- data.frame(x=x, y=y)
fitStudents <- lm(y ~ x, data=D)
summary(fitStudents)

Call:
lm(formula = y ~ x, data = D)

Residuals:
Min 1Q Median 3Q Max

-5.876 -1.451 -0.608 2.234 6.477

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -119.958 18.897 -6.35 0.00022 ***
x 1.113 0.106 10.50 0.0000059 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.88 on 8 degrees of freedom
Multiple R-squared: 0.932,Adjusted R-squared: 0.924
F-statistic: 110 on 1 and 8 DF, p-value: 0.00000587

As we can see the two calculations give the same results regarding the parameter
estimates. We can also see that the direct calculation in R (lm) gives some more
information. How to interpret and calculate these numbers will be treated in the
following pages.

Before we go on with the analysis of the result from lm, the proof of Theorem
5.4 is presented:

Proof

Of Theorem 5.4: In order to find the minimum of the function RSS we differentiate
the residual sum of squares with respect to the parameters

∂RSS
∂β̂0

= −2
n

∑
i=1

(yi − (β̂0 + β̂1xi)), (5-11)

now equating with zero we get

0 = −2
n

∑
i=1

(yi − (β̂0 + β̂1xi))

= −2nȳ + 2nβ̂0 + 2nβ̂1 x̄,

(5-12)
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solving for β̂0 gives

β̂0 = ȳ− β̂1 x̄, (5-13)

and by similar calculations we get

∂RSS
∂β̂1

= ∂

∂β̂1

(
n

∑
i=1

(yi − (ȳ− β̂1 x̄ + β̂1xi))2

)

= ∂

∂β̂1

(
n

∑
i=1

((yi − ȳ)− β̂1(xi − x̄))2

)

= −2
n

∑
i=1

((yi − ȳ)− β̂1(xi − x̄))(xi − x̄)

= −2

[
x

∑
i=1

(yi − ȳ)(xi − x̄)− β̂1

x

∑
i=1

(xi − x̄)2

]
,

(5-14)

equating with zero and solving for β̂1 gives

β̂1 = ∑n
i=1(yi − ȳ)(xi − x̄)

∑n
i=1(xi − x̄)2

= ∑n
i=1(yi − ȳ)(xi − x̄)

Sxx
.

(5-15)

The estimates β̂0 and β̂1 are called least squares estimates, because they minimize
the sum of squared residuals (i.e. RSS). Replacing yi with Yi give the estimators in
the theorem.

�

When we have obtained parameter estimates in the linear regression model
above, we would like to make quantitative statements about the uncertainty
of the parameters, and in order to design tests we will also need the probabil-
ity distribution of the parameter estimators. The usual assumption is that the
errors are normal random variables

Yi = β0 + β1xi + εi, where εi ∼ N(0, σ2), (5-16)

or in other words the errors are independent identically distributed (i.i.d.) nor-
mal random variables with zero mean and variance σ2. When random variables
are involved we know that repeating the experiment will result in different val-
ues of the response (Yi), and therefore in different values of the parameter es-
timates. To illustrate this we can make simulation experiments to analyse the
behaviour of the parameter estimates. Recall that the role of simulation exam-
ples are to illustrate probabilistic behaviour of e.g. estimators, not how actual
data is analysed.



Chapter 5 5.2 PARAMETER ESTIMATES AND ESTIMATORS 252

Remark 5.6 How to write a statistical model

In Remark 3.2 it was explained how to write the model behind the t-tests,
i.e.

Xi ∼ N(µ, σ2) and i.i.d. (5-17)

Remember, that i.i.d. is short for independently and identically distributed,
which essentially means that the observations are selected randomly from
population, see the text after Example 1.2.

Using this notation the linear regression model could be written

Yi ∼ N(β0 + β1xi, σ2) and i.i.d., (5-18)

however we will write models as above in Equation 5-16.
Note, if β1 = 0 the model is

Yi = β0 + εi, where εi ∼ N(0, σ2) and i.i.d., (5-19)

which is exactly the model above in Equation 5-17, and the estimate of the
mean of the population, from which the sample (i.e. (y1, . . . , yn)) was taken,
is then

µ̂ = β̂0. (5-20)

Example 5.7 Simulation of parameter estimation

Consider the linear model

Yi = 10 + 3xi + ε i, ε i ∼ N(0, 52) (5-21)

We can make repetitions of this experiment in R

n <- 10; k <- 500
beta0 <- 10; beta1 <- 3; sigma <- 5
x <- seq(-2, 5, length=n)
y <- matrix(0, ncol=k, nrow=n)
y <- y + beta0 + beta1*x + rnorm(n*k, sd=sigma)

The variable y now contains n rows and k columns, representing k experiments, for
each of the experiment we can calculate the parameter estimates:
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b0 <- numeric(k); b1 <- numeric(k)
for(i in 1:k){

b <- coef(lm(y[ ,i] ~ x))
b0[i] <- b[1]
b1[i] <- b[2]

}
c(mean(b0), mean(b1))

[1] 9.955 3.008

As we can see the average of the parameter estimates (mean(b0) and mean(b1)) are
very close to the true parameter values (β0 = 10 and β1 = 3). We can of course
also look at the empirical density (the normalized histogram, see Section 1.6.1) of
the parameter estimates:
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The estimates seem to be rather symmetrically distributed around the true parame-
ter values. It is also clear that there is some variation in the estimates: the estimates
of β0 range from about 4 to about 16 and the estimates of β1 range from about 1 to 5.

Try changing the R code (see the accompanying chapter script):

What happens to the mean value of the estimates if you change the number
of data points (n)?

What happens to the empirical density and the scatter plot of the parameter
estimates if you change:

• The number of data points (n)?

• The range of x-values?

• The residual variance (σ2)?

• The values of β0 and β1?
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In the example above we saw that the average of the parameter estimates were
very close to the true values, this is of course a nice property of an estimator.
When this is the case in general, i.e. when E[β̂i] = βi we say that the estimator
is central. The estimators β̂0 and β̂1 are in fact central, and we show this in
Section 5.2.1 below.

In order to test hypothesis about β0 and β1 we will also need to give exact state-
ments about the distribution of the parameters. We saw in Example 5.7 above
that the distributions seem to be symmetric around the true values, but we will
need more precise statements about the distributions and their variances. This
important part will be dealt with in the Sections 5.3 and 5.4.

5.2.1 Estimators are central

In the linear regression model we assume that the observed values of Yi can be
split into two parts: the prediction (the part explained by the regression line
(β0 + β1xi)) and the error (a random part (εi)). As usual we view our estima-
tors as functions of random variables (the εi’s), so it makes sense to calculate
the expectation of the estimators. The assumption E(εi) = 0 is central for the
presented arguments, and will be used repeatedly.

In order to find the expectation of the parameter estimators we rewrite our esti-
mators as functions of the true parameters (β0 and β1)

β̂1 = ∑n
i=1(Yi − Ȳ)(xi − x̄)

Sxx
, (5-22)

inserting Yi = β0 + β1xi + εi and Ȳ = 1
n ∑n

i=1(β0 + β1xi + εi) = β0 + β1x̄ + ε̄

gives

β̂1 = ∑n
i=1 [(β0 + β1xi + εi − (β0 + β1x̄ + ε̄)] (xi − x̄)

Sxx
, (5-23)

now the sum is divided into a part which depends on εi (the random part) and
a part which is independent of εi

β̂1 = ∑n
i=1 β1(xi − x̄)2

Sxx
+ ∑n

i=1(εi − ε̄)(xi − x̄)
Sxx

= β1 + ∑n
i=1 εi(xi − x̄)

Sxx
− ε̄ ∑n

i=1(xi − x̄)
Sxx

,
(5-24)
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now observe that ∑n
i=1(xi − x̄) = 0 to get

β̂1 = β1 + ∑n
i=1 εi(xi − x̄)

Sxx
, (5-25)

for β̂0 we get

β̂0 = ȳ− β̂1x̄

= 1
n

n

∑
i=1

(β0 + β1xi + εi)−
(

β1 + ∑n
i=1 εi(xi − x̄)

Sxx

)
x̄

= β0 + β1x̄i + 1
n

n

∑
i=1

εi −
(

β1 + ∑n
i=1 εi(xi − x̄)

Sxx

)
x̄

= β0 + 1
n

n

∑
i=1

εi −
(

∑n
i=1 εi(xi − x̄)

Sxx

)
x̄.

(5-26)

Since expectation is a linear operation (see Chapter 2) and the expectation of εi
is zero we find that E[β̂0] = β0 and E[β̂1] = β1, and we say that β̂0, β̂1 are central
estimators.

5.3 Variance of estimators

In order for us to be able to construct confidence intervals for parameter esti-
mates, talk about uncertainty of predictions and test hypothesis, then we will
need the variance of the parameter estimates as well as an estimator of the error
variance (σ2).

Parameter variance and covariance of estimators are given in the following the-
orem:
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Theorem 5.8 Variance of estimators

The variance and covariance of the estimators in Theorem 5.4 are given by

V[β̂0] = σ2

n
+ x̄2σ2

Sxx
, (5-27)

V[β̂1] = σ2

Sxx
, (5-28)

Cov[β̂0, β̂1] = − x̄σ2

Sxx
, (5-29)

where σ2 is usually replaced by its estimate (σ̂2). The central estimator for
σ2 is

σ̂2 = RSS(β̂0, β̂1)
n− 2

. (5-30)

When the estimate of σ2 is used the variances also become estimates and
we’ll refer to them as σ̂2

β0
and σ̂2

β1
.

The variance of β̂1 is a function of the true error variance (σ2) and Sxx. For most
(all reasonable) choices of the regressors (x), Sxx will be an increasing function
of n, and the variance of β̂1 will therefore decrease as n increases. This expresses
that we will be more certain about the estimates as we increase the number of
points in our sample. The same is true for the variance of β̂0, and the covari-
ance between β̂1 and β̂0. The error variance estimate (σ̂) is the residual sum of
squares divided by n− 2, the intuitive explanation for the n− 2 (rather than n
or n− 1) is that if we only have two pairs (xi, yi, i.e. n = 2), it will not be possi-
ble to say anything about the variation (the residuals will be zero). Or another
phrasing is that; we have used 2 degrees of freedom to estimate β̂0 and β̂1.

Before we turn to the proof of Theorem 5.8, we will take a look at a couple of
examples.

Example 5.9 (Example 5.5 cont.)

In Example 5.5 we found the parameter estimates

β̂0 = −119.96, β̂1 = 1.113,

we can now find predicted values of the dependent variable by

ŷi = −119.96 + 1.114 · xi,
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and the values of the residuals

ei = yi − ŷi,

and finally the error variance estimate is

σ̂2 = 1
10− 2

10

∑
i=1

e2
i .

In R we can find the results by:

beta0 <- coef(fitStudents)[1]
beta1 <- coef(fitStudents)[2]
e <- y - (beta0 + beta1 * x)
n <- length(e)
sigma <- sqrt(sum(e^2) / (n - 2))
sigma.beta0 <- sqrt(sigma^2 * (1 / n + xbar^2 / Sxx))
sigma.beta1 <- sqrt(sigma^2 / Sxx)
c(sigma, sigma.beta0, sigma.beta1)

[1] 132.946 645.983 3.629

As usual we use standard deviations rather than variances, this also means that we
can compare with the results from lm (see Example 5.5). Again we can find our
estimates in the R-output, the parameter standard deviations are given in the second
column of the coefficient matrix and the estimated standard deviation of the error is
called residual standard error.

The simulation example (Example 5.7) can also be extended to check the equa-
tions of Theorem 5.8:

Example 5.10 Simulation

In Example 5.7 we looked at simulation from the model

Yi = 10 + 3xi + ε i, ε i ∼ N(0, 52)

In order to calculate the variance estimates we need to calculate x̄ and Sxx:

Sxx <- (n-1)*var(x)
c(mean(x), Sxx)

[1] 1.50 49.91

y <- matrix(0, ncol=k, nrow=n)
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and we would expect to obtain the variance estimates close to

V[β̂0] = 52
(

1
10

+ 1.502

49.91

)
= 3.63

V[β̂1] = 52

49.91
= 0.501

With simulations we find:

b0 <- numeric(k); b1 <- numeric(k)
sigma <- numeric(k)
for(i in 1:k){

fit <- lm(y[ ,i] ~ x)
b <- coef(fit)
b0[i] <- b[1]
b1[i] <- b[2]
sigma[i] <- summary(fit)$sigma

}
c(var(b0), var(b1), mean(sigma))

[1] 3.7755 0.5427 4.8580

We can see that the simulated values are close to the theoretical values. You are in-
vited to play around with different settings for the simulation, in particular increas-
ing k will increase the accuracy of the estimates of the variances and covariance.

The example above shows how the Theorem 5.8 can be illustrated by simula-
tion, a formal proof is given by:

Proof

Of Theorem 5.8. Using (5-26) we can write the variance of β̂0 as

V(β̂0) = V

[
β0 + 1

n

n

∑
i=1

ε i −
(

∑n
i=1 ε i(xi − x̄)

Sxx

)
x̄

]
, (5-31)

using the definition of the variance (V(X) = E[(X− E[X])2]) and E(ε) = 0 we get

V(β̂0) = V

[
1
n

n

∑
i=1

ε i

]
+ V

[(
∑n

i=1 ε i(xi − x̄)
Sxx

)
x̄
]
−

2 E

[
1
n

n

∑
i=1

ε i

(
∑n

i=1 ε i(xi − x̄)
Sxx

)
x̄

]
,

(5-32)
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now use independence between ε i and ε j (i 6= j) to get

V(β̂0) = σ2

n
+ x̄2σ2 ∑n

i=1(xi − x̄)2

(Sxx)2 + x̄σ2

nSxx

n

∑
i=1

(xi − x̄)

= σ2

n
+ x̄2σ2

Sxx
.

(5-33)

Finally, the variance of β̂1 is (again using the definition of variance and indepen-
dence of the ε’s)

V(β̂1) = V
[

β1 + ∑n
i=1 ε i(xi − x̄)

Sxx

]

= ∑n
i=1(xi − x̄)2 V(ε i)

(Sxx)2

= σ2

Sxx
,

(5-34)

and the covariance between the parameters estimates becomes

Cov(β̂0, β̂1) = E
[
(β̂0 − β0)(β̂1 − β1)

]

= E

[(
1
n

n

∑
i=1

ε i − ∑n
i=1 ε i(xi − x̄)

Sxx

)
x̄ ∑n

i=1 ε i(xi − x̄)
Sxx

]

= x̄
nSxx

E

[
n

∑
i=1

ε i

n

∑
i=1

ε i(xi − x̄)
]
− x̄

(Sxx)2 E

[
n

∑
i=1

ε2
i (xi − x̄)2

]

= x̄σ2(nx̄− nx̄)
nSxx

− x̄

(Sxx)2 σ2
n

∑
i=1

(xi − x̄)2

= − x̄σ2

Sxx
.

(5-35)

To get an estimate of the residual variance we calculate the expected value of the
residual sum of squares

E(RSS) = E

[
n

∑
i=1

(Yi − (β̂0 + β̂1xi))2

]
, (5-36)

inserting Yi = β0 + β1xi + ε i and rearranging gives

E(RSS) =
n

∑
i=1

E
[
(−(β̂0 − β0)− (β̂1 − β1)xi + ε i)2]

=
n

∑
i=1

{
E
[
(β̂0 − β0)2]+ E

[
(β̂1 − β1)2] x2

i + E[ε2
i ]+ (5-37)

2 E
[
(β̂0 − β0)(β̂1 − β1)

]
xi − 2 E

[
(β̂0 − β0)ε i

]
− 2 E

[
(β̂1 − β1)ε i

]
xi
}

,
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now observe that E
[
(β̂0 − β0)2] = V[β̂0], E

[
(β̂1 − β1)2] = V[β̂1], E(ε2

i ) = σ2, and
E
[
(β̂0 − β0)(β̂1 − β1)

]
= Cov(β̂0, β̂1), and insert β̂0 and β̂1 in the last two terms

E(RSS) = n V(β̂0) + V(β̂1)
n

∑
i=1

x2
i + nσ2 + 2

n

∑
i=1

Cov
(

β̂0, β̂1
)

xi−

2
n

∑
i=1

{
E
[(

1
n

n

∑
j=1

ε j −
∑2

j=1 ε j(xj − x̄
Sxx

)
ε i

]
− E

[
∑n

j=1 ε j(xj − x̄)
Sxx

ε i

]
xi

}

= σ2 + nx̄2σ2

Sxx
+ σ2 ∑n

i=1 x2
i

Sxx
+ nσ2 − 2

n

∑
i=1

x̄σ2

Sxx
xi− (5-38)

2
n

∑
i=1

(
σ2

n
− σ2(xi − x̄)

Sxx

)
− 2

n

∑
i=1

σ2(xi − x̄)xi

Sxx
,

now collect terms and observe that ∑ xi = nx̄

E(RSS) = σ2(n + 1) + σ2

Sxx

n

∑
i=1

(x2
i + x̄2)− 2

nx̄2σ2

Sxx
− 2σ2 − 2

σ2 ∑n
i=1(x2

i − xi x̄)
Sxx

= σ2(n− 1) + σ2

Sxx

n

∑
i=1

(−x2
i − x̄2 + 2xi x̄)

= σ2(n− 1)− σ2

Sxx
Sxx (5-39)

= σ2(n− 2),

and thus a central estimator for σ2 is σ̂2 = RSS
n−2 .

�

Before we continue with parameter distributions and hypothesis testing, the
next example illustrates the behaviour of the parameter variance estimates:

Example 5.11 Simulation

Consider the following model

Yi = 1 + xi + ε i, ε i ∼ N(0, 1), (5-40)

also assume that xi = i−1
n−1 , i = 1, . . . , n where n is the number of pairs (xi, yi). We

want to make a simulation experiment for increasing number of pairs, and extract
the parameter variance, parameter covariance and residual variance estimates. In
order to do so we need to extract these numbers from a linear model i R. This can be
done by:
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x <- seq(0, 1, length=10)
y <- 1 + x + rnorm(10)
# Fit the model (estimate parameter)
fit <- lm(y ~ x)
# Print summary of model fit
summary(fit)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-0.867 -0.596 0.232 0.374 1.295

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.454 0.434 1.05 0.3256
x 2.521 0.731 3.45 0.0087 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.738 on 8 degrees of freedom
Multiple R-squared: 0.598,Adjusted R-squared: 0.548
F-statistic: 11.9 on 1 and 8 DF, p-value: 0.0087

# Residual standard deviation
sigma <- summary(fit)$sigma
# Estimated standard deviation of parameters
summary(fit)$coefficients[ ,2]

(Intercept) x
0.4336 0.7310

Now let’s return to the simulation example, the number of independent variables
(x) is increased and we draw the residual from the standard normal distribution, in
this particular case we can find Sxx as a function of n, and compare the expected
values (fix σ2 = 1) with the simulation results
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sigma.beta <- matrix(nrow=k,ncol=2)
sigma <- numeric(k);
n <- seq(3, k+2)
for(i in 1:k){

x <- seq(0,1,length=n[i])
y <- 1+x+rnorm(n[i])
fit <- lm(y ~ x)
sigma[i] <- summary(fit)$sigma
sigma.beta[i, ] <- summary(fit)$coefficients[ ,2]

}
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We see that the residual variance converge to the true value with smaller and smaller
variation, while the parameter variances converge to zero. In a plot like this we can
therefore see the gain from obtaining more observations of the model.

Again you are encouraged to change some of the specifications of the simulation set
up and see what happens.

5.4 Distribution and testing of parameters

The regression model is given by

Yi = β0 + β1xi + εi, εi ∼ N(0, σ2), (5-41)

where the estimators of the parameters and their variances are given by The-
orems 5.4 and 5.8. Since the estimators are linear functions of normal random
variables (εi) they will also be normal random variables. To give the full stochas-
tic model we need to use the estimate of the residual variance, and take the
uncertainty of this estimator into account when constructing tests.

As we already saw in Example 5.7 we cannot expect to get the true value of
the parameter, but there will be some deviations from the true value due to
the stochastic nature of the model/real world application. The purpose of this
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section is to give the precise description of the parameter distributions. We aim
at testing hypothesis of the type

H0,i : βi = β0,i, (5-42)

against some alternatives. The general remarks on hypothesis testing from
Chapter 3 still apply, but we will go through the specific construction for lin-
ear regression here.

The central estimator of σ2 (Equation (5-30)) is χ2-distributed with n − 2 de-
grees of freedom. In order to test the hypothesis in Equation (5-42) we need
the normalized distance to a null hypothesis (i.e the distance from the observed
estimate β̂0,i to the value under the null hypothesis β0,i). From Theorem 5.8 the
standard deviations of the parameter estimates are found to

σ̂β0 =

√
σ̂2

n
+ x̄2σ̂2

Sxx
= σ̂

√
1
n

+ x̄2

∑n
i=1(xi − x̄)2 , (5-43)

σ̂β1 =

√
σ̂2

Sxx
= σ̂

√
1

∑n
i=1(xi − x̄)2 , (5-44)

under the null hypothesis the normalized (with standard deviations) distance
between the estimators and the true values are both t-distributed with n − 2
degrees of freedom, and hypothesis testing and confidence intervals are based
on this t-distribution:

Theorem 5.12 Test statistics

Under the null hypothesis (β0 = β0,0 and β1 = β0,1) the statistics

Tβ0 = β̂0 − β0,0

σ̂β0

, (5-45)

Tβ1 = β̂1 − β0,1

σ̂β1

, (5-46)

are t-distributed with n − 2 degrees of freedom, and inference should be
based on this distribution.

Proof

The proof is omitted, but rely on the fact that β̂ j is normally distributed, σ̂2
β j

is χ2

distributed, and a normal random variable divided by the square root of a χ2 dis-
tributed random variable is t-distributed.
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�

In this material we only test two-sided hypothesis. The hypothesis can be con-
cluded using p-values or critical values, in the same way as we saw for hypoth-
esis regarding mean values in Chapter 3 Section 3.1.7.

Example 5.13 Example 5.9 cont.

We continue with the data from Examples 5.5 and 5.9, where we found the parame-
ter estimates and the variance estimates. We want to test the hypotheses

H00 : β0 = 0 vs. H10 : β0 6= 0, (5-47)

H01 : β1 = 1 vs. H11 : β1 6= 1, (5-48)

on confidence level α = 0.05. With reference to Examples 5.5 and 5.9, and Theorem
5.12, we can calculate the t-statistics as

tobs,β0 = −119.96
18.897

= −6.35, (5-49)

tobs,β1 = 1.113− 1
0.1059

= 1.07. (5-50)

H00 is rejected if |tobs,β0 | > t1−α/2, and H01 is rejected if |tobs,β1 | > t1−α/2, as usual we
can find the critical values in R by:

qt(0.975,df=10-2)

[1] 2.306

and we see that with significance level α = 0.05, then H00 is rejected and H01 isn’t. If
we prefer p-values rather than critical values, these can be calculated by:

p.v0 <- 2 * (1 - pt(abs(-6.35), df=10-2))
p.v1 <- 2 * (1 - pt(abs(1.07), df=10-2))
c(p.v0,p.v1)

[1] 0.0002206 0.3158371

The p-value for the intercept (β0) is less than 0.05, while the p-value for β1 is greater
than 0.05, hence we conclude that β0 6= 0, but we cannot reject that β1 = 1. The
summary of linear model in R, also give t-statistics and p-values (see Example 5.5).
The test statistic and the p-value for H01 is different from the one we obtained above.
The reason for this is that summary() tests the default hypothesis H0i : βi = 0 against
the alternative H1i : βi 6= 0. Even though this choice is reasonable in many situations
it does not cover all situations, and Play MoviesPlay Movies we need to calculate p-
values from the summary statistics ourselves if the hypotheses are different from the
default ones.
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Method 5.14 Level α t-tests for parameter

1. Formulate the null hypothesis: H0,i : βi = β0,i, and the alternative hy-
pothesis H1,i : βi 6= β0,i

2. Compute the test statistic tobs,βi = β̂i−β0,i
σ̂βi

3. Compute the evidence against the null hypothesis

p-valuei = 2 · P(T > |tobs,βi |) (5-51)

4. If p-valuei < α reject H0,i, otherwise accept H0,i

In many situations we will be more interested in quantifying the uncertainty of
the parameter estimates rather than testing a specific hypothesis. This is usually
given in the form of confidence intervals for the parameters:

Method 5.15 Parameter confidence intervals

(1− α) confidence intervals for β0 and β1 are given by

β̂0 ± t1−α/2 · σ̂β0 , (5-52)

β̂1 ± t1−α/2 · σ̂β1 , (5-53)

where t1−α/2 is the (1− α/2)-quantile of a t-distribution with n− 2 degrees
of freedom. Where σ̂β0 and σ̂β1 are calculated from the results in Theorem
5.8, and Equations (5-43) and (5-44).

Remark 5.16

We will not show (prove) the results in Method 5.15, but see Remark 3.34.
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Example 5.17 Example 5.13 cont.

Based on Method 5.15 we immediately find the 95% confidence intervals for the
parameters

Iβ0 = −119.96± t0.975 · 18.897 = [−163.54,−76.38],
Iβ1 = 1.113± t0.975 · 0.1059 = [0.869, 1.357],

with the degrees of freedom for the t-distribution equal 8, and we say with high
confidence that the intervals contain the true parameter values. Of course R can find
these directly from the result returned by lm():

confint(fitStudents, level=0.95)

2.5 % 97.5 %
(Intercept) -163.5348 -76.381
x 0.8684 1.357

5.4.1 Confidence and prediction intervals for the line

It is clearly of interest to predict outcomes of future experiments. Here we need
to distinguish between prediction intervals, where we predict the outcome of
one single experiment, and confidence intervals, where we predict the mean
value of future outcomes. In the latter case we only need to account for the
uncertainty in the parameter estimates while in the first case we will also need
to account for the uncertainty of the error (the random part εi).

If we conduct a new experiment with xi = xnew the expected outcome is

ŷnew = β̂0 + β̂1xnew (5-54)

where the only source of variation comes from the variance of the parameter
estimates, and we can calculate the variance of Ŷnew

V(Ŷnew) = V(β̂0 + β̂1xnew)
= V(β̂0) + V(β̂1xnew) + 2 Cov(β̂0, β̂1xnew),

(5-55)

now use the calculation rules for variances and covariances (Section 2.7), and
insert the variances and the covariance from Theorem 5.8

V(Ŷnew) = σ2

n
+ σ2x̄2

Sxx
+ σ2x2

new
Sxx

− 2
σ2x̄xnew

Sxx

= σ2
(

1
n

+ (xnew − x̄)2

Sxx

)
,

(5-56)
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to find the variance of a single new point, we are using

Ynew = β̂0 + β̂1xnew + εnew, (5-57)

and therefore need to add the variance of the residuals (εnew is independent
from β̂0 and β̂1)

V(Ynew) = σ2
(

1 + 1
n

+ (xnew − x̄)2

Sxx

)
. (5-58)

When we construct confidence and prediction intervals we need to account for
the fact that σ2 is estimated from data and thus use the t-distribution:

Method 5.18 Intervals for the line

The (1-α) confidence interval for the line β̂0 + β̂1xnew is

β̂0 + β̂1xnew ± t1−α/2σ̂

√
1
n

+ (xnew − x̄)2

Sxx
, (5-59)

and the (1-α) prediction interval is

β̂0 + β̂1xnew ± t1−α/2σ̂

√
1 + 1

n
+ (xnew − x̄)2

Sxx
, (5-60)

where t1−α/2 is the (1− α/2)-quantile of the t-distribution with n− 2 degrees
of freedom.

Remark 5.19

We will not show the results in Method 5.18, but use Equations (5-54)-to-
(5-58) and Remark 3.34.

As illustrated in Figure 5.2 the confidence interval width will approach zero
for an increasing number of data points (n) increase or as Sxx increase (actu-
ally, in most situations Sxx will also increase as n increase). Note also, that the
confidence and prediction interval widths are smallest when xnew = x̄. The
prediction interval width will approach 2z1−α/2 · σ as n → ∞. The difference
between the intervals are that the prediction interval covers a new observa-
tion in (1− α) · 100% of the times, while the confidence interval is expected to
cover the true regression line (1− α) · 100% of the times. One important point
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Figure 5.2: Best linear fit (red line), truth (blue line), 95% prediction interval for
the points (light grey area), 95 % CI for the line (dark grey area), and observed
values (black dots), for simulated data (see Example 5.21).

is: “when we have calculated the prediction interval based on some particular
sample, then we actually don’t know the probability of this interval covering
new observations”. What we know is: if we repeat the experiment, then in
(1− α) · 100% of the times a new observation will be covered (we make a new
observation each time). Same goes for the confidence interval: we don’t know if
the true regression line is covered by a particular interval, we only know that if
we repeat the experiment, then in (1− α) · 100% of the times the true regression
line will be covered.

In the following: first an example on calculating confidence and prediction in-
tervals, second an example on the width of the intervals, and finally Example
5.22 on the prediction interval coverage, are given.
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Example 5.20 Student height and weight Example (5.17 cont.)

With reference to Example 5.17 suppose we want to calculate prediction and confi-
dence intervals for the line for a new student with xnew = 200 cm, the prediction is
ŷnew = 102.6 kg and the 95% confidence and prediction intervals become

Ipred = −120 + 1.113 · 200± t0.975(8) · 3.88

√
1 + 1

10
+ (178− 200)2

1342
= [91.8, 113],

(5-61)

Iconf = −120 + 1.113 · 200± t0.975(8) · 3.88

√
1

10
+ (178− 200)2

1342
= [96.5, 109],

(5-62)

where t0.975 is the 0.975-quantile of a t-distribution with n− 2 degrees of freedom.

In R the intervals can be calculated by:

predict(fitStudents, newdata=data.frame(x=200), interval="confidence",
level=0.95)

fit lwr upr
1 102.6 96.52 108.7

predict(fitStudents, newdata=data.frame(x=200), interval="prediction",
level=0.95)

fit lwr upr
1 102.6 91.77 113.4

Example 5.21 Simulation

Figure 5.2 illustrates the difference between the confidence and prediction intervals
for simulated data, with different numbers of observations: The model simulated is

yi = 10 + 2xi + ε i, ε i ∼ N(0, 52) (5-63)

When n increases the width of the confidence interval for the line narrows and
approaches 0, while the prediction interval width does not approach 0, but rather
2z1−α/2σ. Further, the width of the prediction interval will always be larger than the
width of the confidence interval.
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Example 5.22 Prediction interval coverage

In this example it is illustrated that we actually don’t know the probability that a
prediction interval covers new observations, when the it is calculated using a sam-
ple (i.e. we have a realization of the prediction interval). First, a prediction interval
is calculated using a single sample and it is investigated how many of k new obser-
vations falls inside it:

# The number of observations and the parameters
n <- 30
beta0 <- 10; beta1 <- 3; sigma <- 0.5
# Generate some input values
x <- runif(n, -10, 10)
# Simulate output values
y <- beta0 + beta1*x + rnorm(n, sd=sigma)
# Fit a simple linear regression model to the sample
fit <- lm(y ~ x)

# The number of new observations
k <- 10000
# Generate k new input values
xnew <- runif(k, -10, 10)
# Calculate the prediction intervals for the new input values
PI <- predict(fit, newdata=data.frame(x=xnew), interval="pred")
# Simulate new output observations
ynew <- beta0 + beta1*xnew + rnorm(k, sd=sigma)
# Calculate the fraction of times the prediction interval covered the
# new observation
sum(ynew > PI[ ,"lwr"] & ynew < PI[ ,"upr"]) / k

[1] 0.8784

We see that the interval covered only 87.8% of the new observations, which quite
less than 95% (per default predict use α = 5%).

Now, lets repeat the sampling, so we make a new sample k times and each time
calculate a new fit and prediction interval, and each time check if a new observation
falls inside it:
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# The number of simulated samples
k <- 10000
# Repeat the sampling k times
covered <- replicate(k, {

# The number of observations and the parameters
n <- 30
beta0 <- 10; beta1 <- 3; sigma <- 0.5
# Generate some input values
x <- runif(n, -10, 10)
# Simulate output values
y <- beta0 + beta1*x + rnorm(n, sd=sigma)
# Fit a simple linear regression model to the sample
fit <- lm(y ~ x)

# Generate a new input value
xnew <- runif(1, -10, 10)
# The prediction interval for the new value
PI <- predict(fit, newdata=data.frame(x=xnew), interval = "pred")
# Simulate a single new observation
ynew <- beta0 + beta1*xnew + rnorm(1, sd=sigma)
# Check if the new observation was inside the interval
ynew > PI[1,"lwr"] & ynew < PI[1,"upr"]

})
# The fraction of covered new observations
sum(covered)/k

[1] 0.9524

It is found that coverage is now very close to the expected 95% and this is indeed
the way the coverage probability should be interpreted: with repeated sampling the
probability is 1− α that a prediction interval will cover a randomly chosen new ob-
servation. Same goes for confidence intervals (of any kind): with repeated sampling
the probability is 1− α that a confidence interval will cover the true value.

5.5 Matrix formulation of simple linear regression

The simple linear regression problem can be formulated in vector-matrix nota-
tion as

Y = Xβ + ε, ε ∼ N(0, σ2I) (5-64)



Chapter 5 5.5 MATRIX FORMULATION OF SIMPLE LINEAR REGRESSION 272

or



Y1
...

Yn


 =




1 x1
...

...
1 xn



[

β0
β1

]
+




ε1
...

εn


 , εi ∼ N(0, σ2) (5-65)

One of the advantages of the matrix formulation is that the analysis generalize
to higher dimensions in a straight forward way (i.e. more xs and parameters as
in the following chapter). The residual sum of squares is given by

RSS = εTε = (Y − Xβ)T(Y − Xβ), (5-66)

and the parameter estimators are given by:

Theorem 5.23

The estimators of the parameters in the simple linear regression model are
given by

β̂ = (XTX)−1XTY , (5-67)

and the covariance matrix of the estimates is

V[β̂] = σ2(XTX)−1, (5-68)

and central estimate for the error variance is

σ̂2 = RSS
n− 2

. (5-69)

Here V[β̂] is a matrix with elements (V[β̂])11 = V[β̂0], (V[β̂])22 = V[β̂1], and
(V[β̂])12 = (V[β̂])21 = Cov[β̂0, β̂1].

When we want to find the minimum of RSS, we again need to differentiate RSS
with respect to the parameters

∂RSS
∂β

= −2XT(Y − Xβ)

= −2(XTY − XTXβ).
(5-70)

Solving for β gives

β̂ = (XTX)−1XTY , (5-71)
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taking the expectation of β̂ we get

E[β̂] = E[(XTX)−1XTY ]
= (XTX)−1XT E[Xβ + ε]
= (XTX)−1XTXβ

= β.

(5-72)

The variance of the parameters estimates are given by

V[β̂] = V[(XTX)−1XTY ]
= (XTX)−1XT V[Xβ + ε]X(XTX)−T

= (XTX)−1XT(V[Xβ] + V[ε])X(XTX)−T

= (XTX)−1XTσ2IX(XTX)−T

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1.

(5-73)

Again a central estimate for σ2 is

σ̂2 = RSS(β̂)
n− 2

, (5-74)

and the estimate of the parameter covariance matrix is

Σ̂β = σ̂2(XTX)−1. (5-75)

Marginal tests (H0 : βi = βi,0) are constructed by observing that

β̂i − βi,0√
(Σ̂β)ii

∼ t(n− 2). (5-76)

The matrix calculations in R are illustrated in the next example.
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Example 5.24 Student height and weight

To illustrate how the matrix formulation works in R, the student height and weight
data is worked through below:

# Data
X <- cbind(1, x)
n <- length(y)
# Parameter estimates and variance
beta <- solve(t(X) %*% X) %*% t(X) %*% y
e <- y - X %*% beta
s <- sqrt(sum(e^2) / (n - 2))
Vbeta <- s^2 * solve(t(X) %*% X)
sbeta <- sqrt(diag(Vbeta))
T.stat <- beta / sbeta
p.value <- 2 * (1 - pt(abs(T.stat), df = n-2))
# Print the results
coef.mat <- cbind(beta, sbeta, T.stat, p.value);
colnames(coef.mat) <- c("Estimates","Std.Error","t.value","p.value")
rownames(coef.mat) <- c("beta0", "beta1")
coef.mat; s

Estimates Std.Error t.value p.value
beta0 9.815 0.07773 126.3 0
beta1 3.039 0.01363 222.9 0
[1] 0.42

# Prediction and confidence interval
xnew <- matrix(c(1, 200), ncol=2)
ynew <- xnew %*% beta
Vconf <- xnew %*% Vbeta %*% t(xnew)
Vpred <- Vconf + s^2
sqrt(c(Vconf, Vpred))

[1] 2.740 2.772

5.6 Correlation

In the analysis above we focus on situations where we are interested in one
variable (y) as a function of another variable (x). In other situations we might
be more interested in how x and y vary together. Examples could be ecosys-
tems, where the number of predators is a function of the number of preys, but
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the reverse relation is also true, further both of these numbers are affected by
random variations and knowledge of one only gives partial knowledge of the
other. Another example is individual student grade in 2 different courses, be-
fore any grade has been given we will expect that a high grade in one course
will imply a high grade in the other course, but none of them is controlled or
known in advance.

In the cases above we talk about correlation analysis and to this end we will
need the sample correlation coefficient, as defined in Section 1.4.3

ρ̂ = 1
n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
. (5-77)

In Section 1.4.3 we notated sample correlation with r, but here we use ρ̂, since
it is an estimate for the correlation ρ (see Section 2.8), and imply that there is a
meaningful interpretation of the ρ.

5.6.1 Inference on the sample correlation coefficient

In order to answer the question: are X and Y correlated? We will be interested
in constructing a test of the type

H0 : ρ = 0, H1 : ρ 6= 0. (5-78)

Consider the model

Yi = β0 + β1Xi + εi, εi ∼ N(0, σ2), (5-79)

in this case we can rewrite the sample correlation as

ρ̂ = 1
n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)

= Sxx

n− 1
1

Sxx

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)

= Sxx

n− 1
1

sxsy
β̂1

= sx

sy
β̂1,

(5-80)

implying that the hypothesis (5-78) can be tested by testing the hypothesis

H0 : β1 = 0; H1 : β1 6= 0. (5-81)
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since clearly the relationship in Equation (5-79) can be reversed. It should be
noted that we cannot use the test to construct a confidence interval for ρ.

It should be stressed that correlation does not imply causality, it just implies
that the variables x and y vary together. As an example consider the number
of beers sold at the university bar and the number of students attending the
introductory course in statistics. Let’s say that both numbers have increased
and therefore have a high correlation coefficient, but it does not seem reasonable
to conclude that students are more interested in statistics when drinking beers.
A closer look might reveal that the number of enrolled students have actually
increased and this can indeed explain the increase in both numbers.

5.6.2 Correlation and regression

In the linear regression models we would like to measure how much of the
variation in the outcome (Y) is explained by the input (x). A commonly used
measure for this is the coefficient of determination (explanation) or R2-value
(see also the R summary in Example 5.5).

Definition 5.25 Coefficient of determination R2

The coefficient of determination expresses the proportion of variation in the
outcome (Y) explained by the regression line

r2 = 1− ∑i(yi − ŷi)2

∑i(yi − ȳ)2 . (5-82)

In order to find this we will split the variance of y into a component due to the
regression line and a component due to the residual variation

s2
y = 1

n− 1

n

∑
i=1

(yi − ȳ)2

= 1
n− 1

n

∑
i=1

(β̂0 + β̂1xi + ei −
1
n

n

∑
i=1

(β̂0 + β̂1xi + ei))2

= 1
n− 1

n

∑
i=1

(β̂1(xi − x̄) + ei)2

= β̂2
1s2

x + n− 2
n− 1

σ̂2,

(5-83)
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where the first term on the right hand side is the variability explained by the
regression line and the second term is the residual variation. Dividing with the
variance of Y gives a splitting in the relative variation from each of the terms. If
we write out the variation explained by the regression line we get

β̂2
1s2

x
s2

y
=
(

∑n
i=1(yi − ȳ)(xi − x̄)

∑n
i=1(xi − x̄)2

)2 ∑n
i=1(xi − x̄)2

n− 1
n− 1

∑n
i=1(yi − ȳ)2

=
(

1
n− 1

n

∑
i=1

(yi − ȳ)(xi − x̄)
)2

n− 1
∑n

i=1(xi − x̄)2
n− 1

∑n
i=1(yi − ȳ)2

=
(

1
n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

))2

= ρ̂2.

(5-84)

We can therefore conclude that the proportion of variability (R2) in Y explained
by the regression line is equal to the squared sample correlation coefficient (ρ̂2).

Example 5.26 Student weight and height (Example 5.20 cont.)

With reference to Example 5.20 above we can calculate the correlation coefficient in
R:

cor(x, y)^2

[1] 0.9994

or we can base our calculations on the estimated slope:

# fit <- lm(y ~ x)
coef(fitStudents)[2]^2 * var(x) / var(y)

x
0.134

or we can find it directly in the summary of the regression model (see Example 5.5):
where the number is called Multiple R-squared.
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5.7 Model validation

So far we have discussed how to estimate parameters, predict future values,
make inference etc. in the model

Yi = β0 + β1xi + εi, εi ∼ N(0, σ2). (5-85)

In all we have done so far the basic assumption is that the residuals are normally
distributed with zero mean and constant variance, and further the residuals are
mutually independent. These are assumptions which should be checked and
if the assumptions are not fulfilled some actions should be taken in order to
fix this. This is called model validation or residual analysis and is exactly the same
idea behind the validation needed for the mean model used for t-tests in Section
3.1.8, though here including a few more steps.

The normality assumption can be checked by a normal q-q plot, and the con-
stant variance assumption may be checked by plotting the residuals as a func-
tion of the fitted values. The normal q-q plot have been treated in Section 3.1.8
and should be applied equivalently. Plotting the residuals as a function of the
fitted values should not show a systematic behaviour, this means that the range
should be constant and the mean value should be constant, as illustrated in the
following example:

Example 5.27 Simulation

We consider data generated from the following three models

Y1,i = β0 + β1x1,i + ε i, ε i ∼ N(0, 1), (5-86)

Y2,i = β0 + β1x1,i + β2x2,i + ε i, ε i ∼ N(0, 1), (5-87)

Y3,i = eβ0+β1x1,i+εi , ε i ∼ N(0, 1) (5-88)

In all cases we fit the model

Yi = β0 + β1x1,i + ε i, ε i ∼ N(0, σ2), (5-89)

to the data: from the first model we would expect that the residual analysis do not
show any problems, for the second model we have a linear dependence which is
not included in the model and we should see this in the residual analysis, and the
third is a non-linear function of the residuals as well as the regressors and one way
to handle this will be discussed.

The first model is simulated, estimated and analysed by (β0 = 0, β1 = 1, and σ2 = 1):
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n <-100
x1 <- seq(1, 10, length=n)
y <- x1 + rnorm(n)
fit <- lm(y ~ x1)
qqnorm(fit$residuals, pch=19, cex=0.5)
qqline(fit$residuals)
plot(fit$fitted.values, fit$residuals, pch=19, cex=0.5,

xlab="Fitted values ($\\hat{y}_i$)", ylab="Residuals ($e_i$)")
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As we can see there is no serious departure from normality and there are no patterns
in the residuals as a function of the fitted values.

The second model (with β0 = 0, β1 = 1, β2 = 0.5 and σ2 = 1) is simulated, estimated
and analysed by (plot functions omitted):

x1 <- seq(1, 10, length=n)
x2 <- seq(1, 10, length=n)^2
y <- x1 + 0.5 * x2 + rnorm(n)
fit <- lm(y ~ x1)
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R
es

id
ua

ls
(e

i)
We see some departure from normality, but also that the residuals are related to the
fitted values with a clear pattern. In the next chapter we will learn that we should
find the hidden dependence (x2) and include it in the model.

The third model (with β0 = 0, β1 = 1, β2 = 0.5 and σ2 = 1) is simulated, estimated
and analysed by (plot function omitted):

x1 <- seq(4, 10, length=100)
y <- exp( 0.2 * x1 + rnorm(length(x1), sd=0.15))
fit <- lm(y ~ x1)
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We see quite some departure from normality, and also that the variance increases as
a function of the fitted values. When the variance is clearly related with the fitted
values one should try to transform the dependent variable. The following R do the
analysis based in log-transformed data:

y <- log(y)
fit <- lm(y ~ x1)
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R
es

id
ua

ls
(e

i)
From the q-q plot it is found that the distribution is now quite symmetric, however
still with slightly heavy tales, hence less departure from normality, compared to
previous q-q plot. And, as we can see the residuals are no longer related clearly to
the fitted values.

Method 5.28 Model validation (or residual analysis)

1. Check the normality assumption with a q-q plot of the residuals

2. Check the systematic behaviour by plotting the residuals ei as a func-
tion of fitted values ŷi

Remark 5.29 Independence

In general independence should also be checked, while there are ways to do
this we will not discuss them here.
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5.8 Exercises

Exercise 5.1 Plastic film folding machine

On a machine that folds plastic film the temperature may be varied in the range
of 130-185 °C. For obtaining, if possible, a model for the influence of tempera-
ture on the folding thickness, n = 12 related set of values of temperature and
the fold thickness were measured that is illustrated in the following figure:
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a) Determine by looking at the figure, which of the following sets of esti-
mates for the parameters in the usual regression model is correct:

1) β̂0 = 0, β̂1 = −0.9, σ̂ = 36

2) β̂0 = 0, β̂1 = 0.9, σ̂ = 3.6

3) β̂0 = 252, β̂1 = −0.9, σ̂ = 3.6

4) β̂0 = −252, β̂1 = −0.9, σ̂ = 36

5) β̂0 = 252, β̂1 = −0.9, σ̂ = 36

b) What is the only possible correct answer:

1) The proportion of explained variation is 50% and the correlation is
0.98

2) The proportion of explained variation is 0% and the correlation is
−0.98
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3) The proportion of explained variation is 96% and the correlation is
−1

4) The proportion of explained variation is 96% and the correlation is
0.98

5) The proportion of explained variation is 96% and the correlation is
−0.98

Exercise 5.2 Linear regression life time model

A company manufactures an electronic device to be used in a very wide tem-
perature range. The company knows that increased temperature shortens the
life time of the device, and a study is therefore performed in which the life time
is determined as a function of temperature. The following data is found:

Temperature in Celcius (t) 10 20 30 40 50 60 70 80 90
Life time in hours (y) 420 365 285 220 176 117 69 34 5

a) Calculate the 95% confidence interval for the slope in the usual linear re-
gression model, which expresses the life time as a linear function of the
temperature.

b) Can a relation between temperature and life time be documented on level
5%?

Exercise 5.3 Yield of chemical process

The yield y of a chemical process is a random variable whose value is considered
to be a linear function of the temperature x. The following data of correspond-
ing values of x and y is found:

Temperature in °C (x) 0 25 50 75 100
Yield in grams (y) 14 38 54 76 95
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The average and standard deviation of temperature and yield are

x̄ = 50, sx = 39.52847, ȳ = 55.4, sy = 31.66702,

In the exercise the usual linear regression model is used

Yi = β0 + β1xi + εi, εi ∼ N(0, σ2
ε ), i = 1, . . . , 5

a) Can a significant relationship between yield and temperature be docu-
mented on the usual significance level α = 0.05?

b) Give the 95% confidence interval of the expected yield at a temperature of
xnew = 80 °C.

c) What is the upper quartile of the residuals?

Exercise 5.4 Plastic material

In the manufacturing of a plastic material, it is believed that the cooling time has
an influence on the impact strength. Therefore a study is carried out in which
plastic material impact strength is determined for 4 different cooling times. The
results of this experiment are shown in the following table:

Cooling times in seconds (x) 15 25 35 40
Impact strength in kJ/m2 (y) 42.1 36.0 31.8 28.7

The following statistics may be used:

x̄ = 28.75, ȳ = 34.65, Sxx = 368.75.

a) What is the 95% confidence interval for the slope of the regression model,
expressing the impact strength as a linear function of the cooling time?
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b) Can you conclude that there is a relation between the impact strength and
the cooling time at significance level α = 5%?

c) For a similar plastic material the tabulated value for the linear relation
between temperature and impact strength (i.e the slope) is −0.30. If the
following hypothesis is tested (at level α = 0.05)

H0 : β1 = −0.30
H1 : β1 6= −0.30

with the usual t-test statistic for such a test, what is the range (for t) within
which the hypothesis is accepted?

Exercise 5.5 Water polution

In a study of pollution in a water stream, the concentration of pollution is mea-
sured at 5 different locations. The locations are at different distances to the
pollution source. In the table below, these distances and the average pollution
are given:

Distance to the pollution source (in km) 2 4 6 8 10
Average concentration 11.5 10.2 10.3 9.68 9.32

a) What are the parameter estimates for the three unknown parameters in
the usual linear regression model: 1) The intercept (β0), 2) the slope (β1)
and 3) error standard deviation (σ)?

b) How large a part of the variation in concentration can be explained by the
distance?

c) What is a 95%-confidence interval for the expected pollution concentra-
tion 7 km from the pollution source?
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Exercise 5.6 Membrane pressure drop

When purifying drinking water you can use a so-called membrane filtration.
In an experiment one wishes to examine the relationship between the pressure
drop across a membrane and the flux (flow per area) through the membrane.
We observe the following 10 related values of pressure (x) and flux (y):

1 2 3 4 5 6 7 8 9 10
Pressure (x) 1.02 2.08 2.89 4.01 5.32 5.83 7.26 7.96 9.11 9.99
Flux (y) 1.15 0.85 1.56 1.72 4.32 5.07 5.00 5.31 6.17 7.04

Copy this into R to avoid typing in the data:

D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

)

a) What is the empirical correlation between pressure and flux estimated to?
Give also an interpretation of the correlation.

b) What is a 90% confidence interval for the slope β1 in the usual regression
model?

c) How large a part of the flux-variation (∑10
i=1(yi − ȳ)2) is not explained by

pressure differences?

d) Can you at significance level α = 0.05 reject the hypothesis that the line
passes through (0, 0)?
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e) A confidence interval for the line at three different pressure levels: xA
new =

3.5, xB
new = 5.0 and xC

new = 9.5 will look as follows:

β̂0 + β̂1 · xU
new ± CU

where U then is either A, B or C. Write the constants CU in increasing
order.

Exercise 5.7 Membrane pressure drop (matrix form)

This exercise uses the data presented in Exercise 6 above.

a) Find parameters values, standard errors, t-test statistics, and p-values for
the standard hypotheses tests.

Copy this into R to avoid typing in the data:

D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

)

b) Reproduce the above numbers by matrix vector calculations. You will
need some matrix notation in R:

– Matrix multiplication (XY): X%*%Y

– Matrix transpose (XT): t(X)

– Matrix inverse (X−1): solve(X)

– Make a matrix from vectors (X = [xT
1 ; xT

2 ]): cbind(x1,x2)

See also Example 5.24.
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Exercise 5.8 Independence and correlation

Consider the layout of independent variable in Example 5.11,

a) Show that Sxx = n·(n+1)
12·(n−1) .

Hint: you can use the following relations

n

∑
i=1

i = n(n + 1)
2

,

n

∑
i=1

i2 = n(n + 1)(2n + 1)
6

.

b) Show that the asymptotic correlation between β̂0 and β̂1 is

lim
n→∞

ρn(β̂0, β̂1) = −
√

3
2

.

Consider a layout of the independent variable where n = 2k and xi = 0 for i ≤ k
and xi = 1 for k < i ≤ n.

c) Find Sxx for the new layout of x.

d) Compare Sxx for the two layouts of x.

e) What is the consequence for the parameter variance in the two layouts?

f) Discuss pro’s and cons for the two layouts.
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Chapter 6

Multiple Linear Regression

In Chapter 5 we described the linear regression model, when the outcome (Y) is
a linear function of one regressor (x). It is natural to extend this model to include
more than one regressor, in general we can write

Yi = β0 + β1x1,i + · · ·+ βpxp,i + εi, εi ∼ N(0, σ2), (6-1)

where as usual we assume that the residuals (εi) are independent and identi-
cally distributed (i.i.d.) normal random variables with zero mean and some
unknown constant variance (σ). Note, that this is the assumption for all ran-
dom variable error terms in models presented in this chapter, however it is not
noted for every model.

The model in Equation (6-1) is referred to as the General Linear Model (GLM),
and is closely related to the ANOVA covered in a later chapter. As we will see
in Section 6.2, we can also use the approach to approximate non-linear functions
of the regressors, i.e.

Yi = f (xi) + εi, εi ∼ N(0, σ2). (6-2)

The optimal set of parameters for the multiple linear regression model is found
by minimising the residual sum of squares

RSS(β0, . . . , βp) =
n

∑
i=1

[
Yi − (β0 + β1x1,i + · · ·+ βpxp,i)

]2 , (6-3)

where n is the number of observations. The general problem is illustrated in
Figure 6.1, where the black dots represent the observations (yi), the blue and red
lines represent errors (ei) (the ones we minimize), and the surface represented
by the grey lines is the optimal estimate (with p = 2)

ŷi = β̂0 + β̂1x1,i + β̂2x2,i, (6-4)
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Figure 6.1: Conceptual plot for the multiple linear regression problem (red lines,
ei > 0, blue lines (ei < 0).

or

Yi = ŷi + ei, (6-5)

again we put a “hat” on the parameters to emphasize that we are dealing with
parameter estimates (or estimators), as a result of minimising Equation (6-3)
with respect to β0, . . . , βp.

Let’s have a look at a small example:

Example 6.1

The car manufacture in Example 5.1 in Chapter 5 constructed a linear model for
fuel consumption as a function of speed, now a residual analysis revealed that the
residuals were not independent of the fitted values and therefore the model should
be extended. It is realized that the fuel consumption is a function of wind speed as
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well as the speed of the car, and a new model could be formulated as

Yi = β0 + β1x1,i + β2x2,i + ε i (6-6)

where x1,i is the speed, and x2,i is the wind speed (relative to the car). Another
possibility is that the model should in fact not be linear in the speed, but rather
quadratic

Yi = β0 + β1x1,i + β2x2
1,i + ε i (6-7)

= β0 + β1x1,i + β2x2,i + ε i, (6-8)

where x2,i is now the squared speed. Both models ((6-6) and (6-7)) are linear in the
parameters (β0, β1, β2).

The example above illustrate that linearity refers to linearity in the parameters,
not the regressors. E.g. the model

Yi = β0 + β2 log(xi) + εi, (6-9)

is a linear model, while

Yi = β0 + log(xi + β2) + εi, (6-10)

is not a linear model.

6.1 Parameter estimation

Just as in the case of simple linear regression the optimal parameters are the
parameters that minimize the residual sum of squares (RSS), this is equivalent
to equating the partial derivatives of RSS (Equation (6-3)) with zero, i.e.

∂RSS
∂β j

= 0; j = 0, 1, . . . , p, (6-11)

which will give us p + 1 equations (the partial derivatives) in p + 1 unknowns
(the parameters)

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)

]
= 0, (6-12)

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)x1,i

]
= 0, (6-13)

...

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)xp,i

]
= 0, (6-14)
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the Equations (6-12)-(6-14) are referred to as the normal equations, and as we
can see these are a system of linear equations and thus best solved by methods
of linear algebra. The matrix formulation is covered in Section 6.6, but for now
we will just assume that R is able to solve the normal equations and give the
correct parameter estimates, standard errors for the parameter estimates, etc.

When the εi’s are independent identically normally distributed, we can con-
struct tests for the individual parameters, assuming we know the parameter
estimates and their standard errors:

Theorem 6.2 Hypothesis tests and confidence intervals

Suppose the we are given parameter estimates (β̂0, . . . , β̂p) and their corre-
sponding standard errors (σ̂β0 , . . . , σ̂βp), then under the null hypothesis

H0,i : βi = β0,i, (6-15)

the t-statistic

Ti = β̂i − β0,i

σ̂βi

, (6-16)

will follow the t-distribution with n− (p + 1) degrees of freedom, and hy-
pothesis testing and confidence intervals should be based on this distribu-
tion. Further, a central estimate for the residual variance is

σ̂2 =
RSS(β̂0, . . . , β̂p)

n− (p + 1) . (6-17)

The interpretation of multiple linear regression in R is illustrated in the follow-
ing example:
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Example 6.3

The data used for Figure 6.1 is given in the table below

x1 0.083 0.409 0.515 0.397 0.223 0.292 0.584 0.491 0.923 0.280
x2 0.625 0.604 0.077 0.414 0.343 0.202 0.840 0.266 0.831 0.385
y 0.156 1.234 0.490 1.649 0.500 0.395 1.452 0.416 1.390 0.234

x1 0.772 0.857 0.758 0.850 0.409 0.055 0.578 0.745 0.886 0.031
x2 0.821 0.308 0.440 0.865 0.111 0.970 0.192 0.939 0.149 0.318
y 1.574 0.349 1.287 1.709 0.323 1.201 1.210 1.787 0.591 0.110

We assume the model

Yi = β0 + β1x1,i + β2x2,i + ε i, ε i ∼ N(0, σ2). (6-18)

In order to estimate parameters in R we would write:

# Read data
x1 <- c(0.083, 0.409, 0.515, 0.397, 0.223, 0.292, 0.584, 0.491, 0.923,

0.280, 0.772, 0.857, 0.758, 0.850, 0.409, 0.055, 0.578, 0.745,
0.886, 0.031)

x2 <- c(0.625, 0.604, 0.077, 0.414, 0.343, 0.202, 0.840, 0.266, 0.831,
0.385, 0.821, 0.308, 0.440, 0.865, 0.111, 0.970, 0.192, 0.939,
0.149, 0.318)

y <- c(0.156, 1.234, 0.490, 1.649, 0.500, 0.395, 1.452, 0.416, 1.390,
0.234, 1.574, 0.349, 1.287, 1.709, 0.323, 1.201, 1.210, 1.787,
0.591, 0.110)
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# Parameter estimation
fit <- lm(y ~ x1 + x2)

# Summary of fit (parameter estimates, standard error, p-values, etc.)
summary(fit)

Call:
lm(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max

-0.6242 -0.2040 0.0280 0.0957 0.9251

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.118 0.212 -0.56 0.58571
x1 0.827 0.304 2.72 0.01459 *
x2 1.239 0.293 4.24 0.00056 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.378 on 17 degrees of freedom
Multiple R-squared: 0.632,Adjusted R-squared: 0.589
F-statistic: 14.6 on 2 and 17 DF, p-value: 0.000203

The interpretation of the R output is exactly the same as in the simple linear re-
gression. The first column gives the parameter estimates (β̂0, β̂1, β̂2), second column
gives the standard error of the parameter estimates (σ̂β0 , σ̂β1 , σ̂β2), third column gives
the t-statistics for the standard hypothesis H0,i : βi = 0, and finally the last column
gives the p-value for the two-sided alternative. We can therefore conclude that the
effect of x1 and x2 are both significant on a 5% confidence level.
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Method 6.4 Level α t-tests for parameters

1. Formulate the null hypothesis: H0,i : βi = β0,i, and the alternative hy-
pothesis H1,i : βi 6= β0,i

2. Compute the test statistic tobs,βi = β̂i−β0,i
σ̂βi

3. Compute the evidence against the null hypothesis

p-valuei = 2P(T > |tobs,βi |) (6-19)

4. If the p-valuei < α reject H0,i, otherwise accept H0,i

In many situations we will be more interested in quantifying the uncertainty of
the parameter estimates rather than testing a specific hypothesis. This is usually
given in the form of confidence intervals for the parameters:

Method 6.5 Parameter confidence intervals

(1− α) confidence interval for βi is given by

β̂i ± t1−α/2 σ̂βi , (6-20)

where t1−α/2 is the (1 − α/2)-quantile of a t-distribution with n − (p + 1)
degrees of freedom.

Remark 6.6 (On finding β̂i and σβ̂i
in methods 6.4 and 6.5)

In Chapter 5 we were able to formulate the exact formulas for β̂i and σ̂β̂i
, in

a multiple linear regression setting we simply use R (summary(fit)), to find
these values.
The explicit formulas are however given in the matrix formulation of the
linear regression problem in Section 6.6.
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Example 6.7

For our example the 95% confidence intervals become (t1−α/2 = 2.110)

Iβ0 = −0.118± 2.110 · 0.212, (6-21)

Iβ1 = 0.827± 2.110 · 0.304, (6-22)

Iβ2 = 1.239± 2.110 · 0.293, (6-23)

or in R (for β0):

-0.118+c(-1,1)*qt(0.975,df=17)*0.212

[1] -0.5653 0.3293

or directly in R (for β0, β1, and β2):

confint(fit, level = 0.95)

2.5 % 97.5 %
(Intercept) -0.5643 0.329
x1 0.1854 1.470
x2 0.6220 1.857

The examples above illustrates how we can construct confidence intervals for
the parameters and test hypotheses without having to implement the actual
estimation ourselves.

6.1.1 Confidence and prediction intervals for the line

Just as for the simple linear regression model we will often be interested in pre-
diction of future outcome of an experiment, and as usual we will be interested
in quantifying the uncertainty of such an experiment. The expected value of a
new experiment (with x1 = x1,new, . . . , xp = xp,new) is

ŷnew = β̂0 + β̂1x1,new + . . . + β̂pxp,new. (6-24)

In order to quantify the uncertainty of this estimate we need to calculate the
variance of ŷnew, in Section 5.3 we saw that this variance is a function of: 1) the
variance of the parameters, 2) the covariance between the parameters, and 3)
xnew. This is also true in the multiple linear regression case, except that xnew is
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now a vector and we need to account for pairwise covariance between all pa-
rameter estimators. This analysis is most elegantly done with matrix formula-
tion and is covered in Section 6.6. We can however do this in R without dealing
with the covariances explicitly.

This is illustrated in the following example:

Example 6.8

With reference to Example 6.3 suppose we want to predict the expected value of
Y at (x1,new, x2,new) = (0.5, 0.5) and at (x1,new, x2,new) = (1, 1), we would also like
to know the standard error of the prediction and further the confidence and the
prediction intervals. The standard error of the prediction can be calculated in R by:

# New data
Xnew <- data.frame(x1 = c(0.5, 1), x2 = c(0.5, 1))

# Prediction
pred <- predict(fit, newdata = Xnew, se = TRUE)
pred

$fit
1 2

0.9157 1.9491

$se.fit
1 2

0.08477 0.21426

$df
[1] 17

$residual.scale
[1] 0.3784

The data-frame “Xnew” is the points where we want to predict the outcome, the ob-
ject “pred” has the fitted values ($fit) at the points in “Xnew”, the standard error for
the predictions ($se.fit), the degrees of freedom ($df) in the residual (the one we
use for t-test), and ($residual.scale) the estimate of the error standard deviation
(σ̂).

Notice that the standard error for ŷnew is much larger for the point (x1,new, x2,new) =
(1, 1) than for the point (x1,new, x2,new) = (0.5, 0.5), this is because the (1,1) point is
far from the average of the regressors, while the point (0.5,0.5) is close to the mean
value of the regressors.
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Now, we are actually able to calculate confidence and prediction intervals for the
two points, the confidence intervals become

CI1 = 0.9157± t1−α/2 · 0.08477, (6-25)

CI2 = 1.9491± t1−α/2 · 0.21426, (6-26)

and the prediction intervals become (add the variance of Ŷnew and σ̂2)

PI1 = 0.9157± t1−α/2 ·
√

0.084772 + 0.37842, (6-27)

PI2 = 1.9491± t1−α/2 ·
√

0.214262 + 0.37842, (6-28)

where t1−α/2 is obtained from a t-distribution with 17 degrees of freedom.

Or we can calculate the confidence and prediction intervals directly in R (with con-
fidence level α = 0.05):

# Confidence interval
predict(fit, newdata = Xnew, interval = "confidence", level = 0.95)

fit lwr upr
1 0.9157 0.7369 1.095
2 1.9491 1.4971 2.401

# Prediction interval
predict(fit, newdata = Xnew, interval = "prediction", level = 0.95)

fit lwr upr
1 0.9157 0.09759 1.734
2 1.9491 1.03165 2.867

We saw in the example above that the standard error for the fit is large when
we are far from the centre of mass for the regressors, this is illustrated in Figure
6.2.
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Figure 6.2: Standard error for ŷnew (blue surface) and standard error for ynew
(red surface).
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Method 6.9 Intervals for the line (by R)

The (1-α) confidence and prediction intervals for the line β̂0 + β̂1x1,new +
· · ·+ β̂pxp,new are calculated in R by

# Confidence interval
predict(fit, newdata=Xnew, interval="confidence", level=1-alpha)

# Prediction interval
predict(fit, newdata=Xnew, interval="prediction", level=1-alpha)

Remark 6.10

Explicit formulas for confidence and prediction intervals are given in Section
6.6.

6.2 Curvilinear regression

Suppose we are given pairs of values of x and y and there seems to be informa-
tion in x about y, but the relation is clearly non-linear

Yi = f (xi) + εi, εi ∼ N(0, σ2), (6-29)

and the non-linear function f (x) is unknown to us. The methods we have dis-
cussed don’t apply for non-linear functions, and even if we could do non-linear
regression we would not know which function to insert. We do however know
from elementary calculus that any function can be approximated by its Taylor
series

f (x) ≈ f (0) + f ′(0) · x + f ′′(0)
2

x2 + · · ·+ f (p)(0)
p!

xp, (6-30)

now replace the Taylor series coefficients
(

f (j)(0)
j!

)
by β j and insert (6-30) in

(6-29) to get

Yi = β0 + β1x + β2x2 + · · ·+ βpxp + εi

= β0 + β1x1 + β2x2 + · · ·+ βpxp + εi,
(6-31)

where xj = xj, we refer to this method as curvilinear regression. The method is
illustrated in the following example:
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Example 6.11 Simulation of non-linear model

We simulate the following model

Yi = sin(πxi) + ε i, ε i ∼ N(0, 0.12), (6-32)

with x ∈ [0, 1] by:

n <- 200
x <- runif(n)
y <- sin(pi*x) + rnorm(n,sd=0.1)

Yi is a non-linear function of x but lets try to estimate parameters in the simple linear
regression model

Yi = β0 + β1xi + ε i, ε i ∼ N(0, σ2), (6-33)

and find the 95% confidence interval for the parameters:

fit1 <- lm(y ~ x)
confint(fit1)

2.5 % 97.5 %
(Intercept) 0.5737 0.7544
x -0.1960 0.1251

We see that the 95% confidence interval for β1 covers zero, and we can therefore
not reject the null hypothesis that β1 is zero. Now include a quadratic term in x1 to
approximate the non-linear function by the model

Yi = β0 + β1xi + β2x2
i + ε i, ε i ∼ N(0, σ2), (6-34)

x1 <- x; x2 <- x^2
fit2 <- lm(y ~ x1 + x2)
confint(fit2)

2.5 % 97.5 %
(Intercept) -0.0906 -0.005303
x1 3.9858 4.381327
x2 -4.3823 -4.001747

Now we see that all parameters are significantly different from zero on a 5% confi-
dence level. The plot below shows the residuals for the two models as a function of
the fitted values:
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It is clear that including the second order term removed most, if not all, systematic
dependence in the residuals. Also looking at the fitted values together with the
actual values shows that we have a much better model when including the second
order term (red line):
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Remark 6.12

In general one should be careful when extrapolation models into areas
where there is no data, and this is in particular true when we use curvilinear
regression.
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6.3 Collinearity

In statistics collinearity refers to situations where the sample correlation be-
tween the independent variables is high. If this is the case we should be careful
with interpretation of parameter estimates, and often we should actually reduce
the model. Now consider the model

yi = β0 + β1x1 + β2x2 + εi, εi ∼ N(0, σ2), (6-35)

and assume that the sample correlation between x1 and x2 is exactly equal 1,
this implies that we can write x2 = a + bx1, inserting in (6-35) gives

yi = β0 + β1x1 + β2(a + bx1) + εi (6-36)
= β0 + β2a + (β1 + β2b)x1 + εi, (6-37)

which shows that we can only identify β0 + β2a and (β1 + β2b), so the model is
essentially a simple linear regression model. It could also have been the other
way around, i.e. x1 = a + bx2, and thus it seems that it is not possible to dis-
tinguish between x1 and x2. In real life application the correlation between the
regressors is rarely 1, but rather close to 1 and we need to handle this case as
well. In actual practice a simple way to handle this is, by adding or removing
one parameter at the time. Other procedures exist, e.g. using the average of the
regressors, or using principle component regression, we will not discuss these
approaches further here.

A small example illustrates the principle:

Example 6.13 Simulation

Consider the model

Yi = β0 + β1x1 + β2x2 + ε i, ε i ∼ N(0, σ2), (6-38)

with data generated from the following R-code:

n <- 100
x1 <- runif(n)
x2 <- x1 + rnorm(n, sd=0.01)
y <- x1 + x2 + rnorm(n, sd=0.5)
plot(x1, y, pch=19, cex=0.5, xlab=expression(x[1]))
plot(x2, y, pch=19, cex=0.5, xlab=expression(x[2]))



Chapter 6 6.3 COLLINEARITY 304

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

x1

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

x2

y
Clearly, both x1 and x2 contain information about y, but our usual linear regression
gives:confint(lm(y ~ x1 + x2))

2.5 % 97.5 %
(Intercept) -0.3453 0.07124
x1 -14.9270 5.98682
x2 -3.6745 17.20468

we see that none of the parameters are significant (on a 5% level), but if we remove
x1 (this is the one with the highest p-value) from the model we get:

summary(lm(y ~ x2))

Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-1.2229 -0.3025 0.0025 0.2641 1.7649

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.140 0.105 -1.33 0.19
x2 2.305 0.194 11.86 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.502 on 98 degrees of freedom
Multiple R-squared: 0.589,Adjusted R-squared: 0.585
F-statistic: 141 on 1 and 98 DF, p-value: <2e-16

and the slope is now highly significant.
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The lesson learned from the example above is that we should always try to
reduce the model before concluding that individual parameters are zero. Model
development is a partly manual process, where the end result might depend on
the selection strategy. The usual strategies are: backward selection, where we start
by the most complicated model we can think of and remove one term at a time
(this is what we did in the example above), and forward selection where we start
by a simple model and include new terms one by one.

Remark 6.14 Interpretation of parameters

In general we can interpret the parameters of a multiple linear regression
model as the effect of the variable given the other variables. E.g. β j is the
effect of xj when we have accounted for other effects (xi, i 6= j). This inter-
pretation is however problematic when we have strong collinearity, because
the true effects are hidden by the correlation.

An additional comment on the interpretation of parameters in the example
above is: since the data is simulated, we know that the true parameters are
β1 = β2 = 1. In the full model we got β̂1 ≈ −4.5 and β̂2 ≈ 6.75. Both of these
numbers are clearly completely off, the net effect is however β̂1 + β̂2 ≈ 2.25
(because x1 ≈ x2). In the reduced model we got β̂2 = 2.3, which is of course
also wrong, but nearly the same level, and only holds because x1 ≈ x2.

6.4 Residual analysis

Just as for the simple linear regression model we will need to justify that the
assumptions in the linear regression model holds. This is handled by q-q plots,
and considering the relation between the residuals and the fitted values. This
analysis is exactly the same as for the simple linear regression in Section 5.7.

We saw that plotting the residuals as a function of fitted values could reveal
systematic dependence, which imply there are un-modelled effects that should
be included in the model. The question is of course how we can identify such
effects. One way is to plot the residuals as a function of potential regressors,
which are not included. Plotting the residuals as a function of the included
regressors might reveal non-linear effects. Again we illustrate this method by
an example:
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Example 6.15 Simulation

Consider the model in the R script below, the true model is

yi = x1 + 2x2
2 + ε i, ε i ∼ N(0, 0.1252) (6-39)

in a real application the true model is of course hidden to us and we would start by
a multiple linear model with the two effects x1 and x2. Looking at the plots below
also suggests that this might be a good model:

n <- 100
x1 <- runif(n)
x2 <- runif(n)
y <- x1 + 2*x2^2 + rnorm(n,sd=0.125)
plot(x1, y, pch=19, cex=0.5)
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Now we fit the model

yi = β0 + β1x1 + β2x2 + ε i, ε i ∼ N(0, σ2), (6-40)

and plot the resulting residuals as a function of the fitted values, and the indepen-
dent variables (x1 and x2). There seems to be a systematic dependence between the
fitted values and the residuals (left plot):

fit <- lm(y ~ x1 + x2)
plot(fitted.values(fit), residuals(fit), pch=19, cex=0.7)
plot(x1, residuals(fit), pch=19, cex=0.7)
plot(x2, residuals(fit), pch=19, cex=0.7)
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The left plot does however not suggest where the dependence comes from. Now
looking at the residuals as a function of x1 and x2 (centre and left plot) reveal that
the residuals seem to be quadratic in x2, and we should therefore include x2

2 in the
model:

x3 <- x2^2
fit <- lm(y ~ x1 + x2 + x3)
plot(fitted.values(fit), residuals(fit), pch=19, cex=0.7)
plot(x1, residuals(fit), pch=19, cex=0.7)
plot(x2, residuals(fit), pch=19, cex=0.7)
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We now see that there is no systematic dependence in the residuals and we can
report the final result.
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summary(fit)

Call:
lm(formula = y ~ x1 + x2 + x3)

Residuals:
Min 1Q Median 3Q Max

-0.27486 -0.07353 -0.00098 0.07630 0.23112

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.000979 0.032200 -0.03 0.98
x1 0.998212 0.042055 23.74 <2e-16 ***
x2 0.087010 0.138613 0.63 0.53
x3 1.859060 0.140499 13.23 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.107 on 96 degrees of freedom
Multiple R-squared: 0.972,Adjusted R-squared: 0.972
F-statistic: 1.13e+03 on 3 and 96 DF, p-value: <2e-16

Now we can actually see that we find parameter values close to the true ones, further
we might actually exclude x2 (while keeping x2

2) and the intercept from the model,
since they are not significantly different from zero.
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6.5 Linear regression in R

Method 6.16 below gives a practical summary of Chapter 5 and 6 with refer-
ences to the applied R-functions.

Method 6.16

This method box is a very short guide to R and linear regression.

Data
Physical/mechanistic

understanding

1: (Re)formulate linear or curve-linear model:
Yk = β0 + β1x1,k + ...+ βpxp,k + εk; εk ∼ N(0, σ2)

2: Estimate parameters with:
> fit <- lm(y ~ x1 + ... + xp)

3: Residual analysis using e.g.:
> qqnorm(residuals(fit)) # Normal assumption
> plot(fited.values(fit), residuals(fit)) # Checking for structures
> plot(x1,residuals(fit)) # Identify structures

4: Analyse model using:
> summary(model) # (p-values)
> confint(model) # (confidence interval for parameters)
Collinearity present? Simplify (using e.g. backward selection)

5: Calculate confidence and prediction interval using:
> predict(model, newdata=data.frame(x1=x1new,...,xp=xpnew),

interval="confidence")

> predict(model, newdata=data.frame(x1=x1new,...,xp=xpnew),

interval="prediction")
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6.6 Matrix formulation

The multiple linear regression problem can be formulated in vector-matrix no-
tation as

Y = Xβ + ε, ε ∼ N(0, σ2I), (6-41)

or



Y1
...

Yn


 =




1 x1,1 · · · xp,1
...

...
...

1 x1,n · · · xp,n







β0
...

βp


+




ε1
...

εn


 , εi ∼ N(0, σ2). (6-42)

Notice, that the formulation in (6-41) is exactly the same as we saw in Section
5.5.

The residual sum of squares are calculated by

RSS = εTε = (y− Xβ)T(y− Xβ), (6-43)

and the parameter estimates are given by:

Theorem 6.17

The estimators of the parameters in the simple linear regression model are
given by

β̂ = (XTX)−1XTY , (6-44)

and the covariance matrix of the estimates is

V[β̂] = σ2(XTX)−1, (6-45)

and central estimate for the residual variance is

σ̂2 = RSS
n− (p + 1) . (6-46)

The proof of this theorem follows the exact same arguments as the matrix for-
mulation of the simple linear regression model in Chapter 5 and hence it is
omitted here.

Marginal tests (H0 : βi = βi,0) can also in the multiple linear regression case be
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constructed by

β̂i − βi,0√
(Σ̂β)ii

∼ t(n− (p + 1)). (6-47)

6.6.1 Confidence and prediction intervals for the line

Now suppose that we want to make a prediction at a new point

xnew = [1, x1,new, . . . , xp,new],

in order to construct confidence and prediction intervals we calculate the vari-
ance of Ŷnew

V(Ŷnew) = V(xnewβ̂)
= xnew V(β̂)xT

new

= σ2xnew(XTX)−1xT
new,

(6-48)

in practice we will of course replace σ2 with its estimate (σ̂2), and hence use
quantile of the appropriate t-distribution (and standard errors rather than vari-
ances) to calculate confidence intervals. The variance of a single prediction is
calculated by

V(Ynew) = V(xnewβ̂ + εnew)
= xnew V(β̂)xT

new + σ2

= σ2(1 + xnew(XTX)−1xT
new).

(6-49)

The calculations above illustrate that the derivations of variances are relatively
simple, when we formulate our model in the matrix-vector notation.
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6.7 Exercises

Exercise 6.1 Nitrate concentration

In order to analyze the effect of reducing nitrate loading in a Danish fjord, it was
decided to formulate a linear model that describes the nitrate concentration in
the fjord as a function of nitrate loading, it was further decided to correct for
fresh water runoff. The resulting model was

Yi = β0 + β1x1,i + β2x2,i + εi, εi ∼ N(0, σ2), (6-50)

where Yi is the natural logarithm of nitrate concentration, x1,i is the natural
logarithm of nitrate loading, and x2,i is the natural logarithm of fresh water
run off.

a) Which of the following statements are assumed fulfilled in the usual mul-
tiple linear regression model?

1 ) εi = 0 for all i = 1, ..., n, and β j follows a normal distribution

2 ) E[x1] = E[x2] = 0 and V[εi] = β2
1

3 ) E[εi] = 0 and V[εi] = β2
1

4 ) εi is normally distributed with constant variance, and εi and ε j are
independent for i 6= j

5 ) εi = 0 for all i = 1, ..., n, and xj follows a normal distribution for
j = {1, 2}

The parameters in the model were estimated in R and the following results are
available (slightly modified output from summary):

> summary(lm(y ~ x1 + x2))

Call:
lm(formula = y ~ x1 + x2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.36500 0.22184 -10.661 < 2e-16
x1 0.47621 0.06169 7.720 3.25e-13
x2 0.08269 0.06977 1.185 0.237
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---
Residual standard error: 0.3064 on 237 degrees of freedom
Multiple R-squared: 0.3438,Adjusted R-squared: 0.3382
F-statistic: 62.07 on 2 and 237 DF, p-value: < 2.2e-16

b) What are the parameter estimates for the model parameters (β̂i and σ̂2)
and how many observations are included in the estimation?

c) Calculate the usual 95% confidence intervals for the parameters (β0, β1,
and β2).

d) On level α = 0.05 which of the parameters are significantly different from
0, also find the p-values for the tests used for each of the parameters?

Exercise 6.2 Multiple linear regression model

The following measurements have been obtained in a study:

No. 1 2 3 4 5 6 7 8 9 10 11 12 13
y 1.45 1.93 0.81 0.61 1.55 0.95 0.45 1.14 0.74 0.98 1.41 0.81 0.89
x1 0.58 0.86 0.29 0.20 0.56 0.28 0.08 0.41 0.22 0.35 0.59 0.22 0.26
x2 0.71 0.13 0.79 0.20 0.56 0.92 0.01 0.60 0.70 0.73 0.13 0.96 0.27

No. 14 15 16 17 18 19 20 21 22 23 24 25
y 0.68 1.39 1.53 0.91 1.49 1.38 1.73 1.11 1.68 0.66 0.69 1.98
x1 0.12 0.65 0.70 0.30 0.70 0.39 0.72 0.45 0.81 0.04 0.20 0.95
x2 0.21 0.88 0.30 0.15 0.09 0.17 0.25 0.30 0.32 0.82 0.98 0.00

It is expected that the response variable y can be described by the independent
variables x1 and x2. This imply that the parameters of the following model
should be estimated and tested

Yi = β0 + β1x1 + β2x2 + εi, εi ∼ N(0, σ2).
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a) Calculate the parameter estimates (β̂0, β̂1, β̂2, and σ̂2), in addition find the
usual 95% confidence intervals for β0, β1, and β2.
You can copy the following lines to R to load the data:

D <- data.frame(
x1=c(0.58, 0.86, 0.29, 0.20, 0.56, 0.28, 0.08, 0.41, 0.22,

0.35, 0.59, 0.22, 0.26, 0.12, 0.65, 0.70, 0.30, 0.70,
0.39, 0.72, 0.45, 0.81, 0.04, 0.20, 0.95),

x2=c(0.71, 0.13, 0.79, 0.20, 0.56, 0.92, 0.01, 0.60, 0.70,
0.73, 0.13, 0.96, 0.27, 0.21, 0.88, 0.30, 0.15, 0.09,
0.17, 0.25, 0.30, 0.32, 0.82, 0.98, 0.00),

y=c(1.45, 1.93, 0.81, 0.61, 1.55, 0.95, 0.45, 1.14, 0.74,
0.98, 1.41, 0.81, 0.89, 0.68, 1.39, 1.53, 0.91, 1.49,
1.38, 1.73, 1.11, 1.68, 0.66, 0.69, 1.98)

)

b) Still using confidence level α = 0.05 reduce the model if appropriate.

c) Carry out a residual analysis to check that the model assumptions are ful-
filled.

d) Make a plot of the fitted line and 95% confidence and prediction intervals
of the line for x1 ∈ [0, 1] (it is assumed that the model was reduced above).

Exercise 6.3 MLR simulation exercise

The following measurements have been obtained in a study:

Nr. 1 2 3 4 5 6 7 8
y 9.29 12.67 12.42 0.38 20.77 9.52 2.38 7.46
x1 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
x2 4.00 12.00 16.00 8.00 32.00 24.00 20.00 28.00
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a) Plot the observed values of y as a function of x1 and x2. Does it seem
reasonable that either x1 or x2 can describe the variation in y?
You may copy the following lines into R to load the data

D <- data.frame(
y=c(9.29,12.67,12.42,0.38,20.77,9.52,2.38,7.46),
x1=c(1.00,2.00,3.00,4.00,5.00,6.00,7.00,8.00),
x2=c(4.00,12.00,16.00,8.00,32.00,24.00,20.00,28.00)

)

b) Estimate the parameters for the two models

Yi = β0 + β1x1,i + εi, εi ∼ N(0, σ2),

and

Yi = β0 + β1x2,i + εi, εi ∼ N(0, σ2),

and report the 95% confidence intervals for the parameters. Are any of the
parameters significantly different from zero on a 5% confidence level?

c) Estimate the parameters for the model

Yi = β0 + β1x1,i + β2x2,i + εi, εi ∼ (N(0, σ2), (6-51)

and go through the steps of Method 6.16 (use confidence level 0.05 in all
tests).

d) Find the standard error for the line, and the confidence and prediction in-
tervals for the line for the points (min(x1), min(x2)), (x̄1, x̄2), (max(x1), max(x2)).

e) Plot the observed values together with the fitted values (e.g. as a function
of x1).
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Chapter 7

Inference for Proportions

7.1 Categorical data

Until now we have mainly focused on continuous outcomes such as the height
of students. In many applications the outcome that we wish to study is cate-
gorical (7.1). For example, one could want to study the proportion of defective
components in a sample, hence the outcome has two categories: “defect” and
“non-defect”. Another example could be a study of the caffeine consumption
among different groups of university students, where the consumption could
be measured via a questionnaire in levels: none, 1-3 cups per day, more than 3
cups per day. Hence the categorical variable describing the outcome has three
categories.

In both examples the key is to describe the proportion of outcomes in each cate-
gory.

Remark 7.1

A variable is categorical if each outcome belongs to a category, which is one
of a set of categories.

7.2 Estimation of single proportions

We want to be able to find estimates of the population category proportions (i.e.
the “true” proportions). We sometimes refer to such a proportion as the proba-
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bility of belonging to the category. This is simply because the probability that a
randomly sampled observation from the population belongs to the category, is
the proportion of the category in the population.

Example 7.2

In a survey in the US in 2000, 1154 people answered the question whether they
would be willing to pay more for petrol to help the environment. Of the 1154 par-
ticipants 518 answered that they would be willing to do so.

Our best estimate of the proportion of people willing to pay more (p) is the observed
proportion of positive answers

p̂ = "Number of positive answers"
"Total number of participants"

= 518
1154

= 0.4489.

This means that our best estimate of the proportion of people willing to pay more
for petrol to help the environment is 44.89%.

In the above example we can think of n = 1154 trials, where we each time have
a binary outcome (yes or no), occurring with the unknown probability p. The
random variable X counts the number of times we get a yes to the question,
hence X follows a binomial distribution B(n, p) with the probability of observ-
ing x successes given by

P(X = x) =
(

n
x

)
px(1− p)n−x. (7-1)

As mentioned in Example 7.2, our best estimate of the unknown p is the pro-
portion

p̂ = x
n

, p̂ ∈ [0, 1]. (7-2)

From Chapter 2 we know that if X ∼ B(n, p), then

E(X) = np, (7-3)
V(X) = np(1− p). (7-4)

This means that

E( p̂) = E
(

X
n

)
= np

n
= p, (7-5)

V( p̂) = V
(

X
n

)
= 1

n2 V(X) = p(1− p)
n

. (7-6)
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From Equation (7-5) we see that p̂ is an unbiased estimator of the unknown p
and from Equation (7-6) that the standard error (the (sampling) standard devi-

ation) of p̂ is σp̂ =
√

p(1−p)
n . It is important to quantify the uncertainty of the

calculated estimate using confidence intervals. For large samples, the Central
Limit Theorem gives us that the sample proportion p̂ is well approximated by
a normal distribution, and thus a (1− α)100% confidence interval for the pop-
ulation proportion p is

p̂± z1−α/2 σp̂. (7-7)

However, σp̂ depends on the unknown p, which we do not know. In practice
we will have to estimate the standard error by substituting the unknown p by
the estimate p̂.

Method 7.3 Proportion estimate and confidence interval

The best estimate of the probability p of belonging to a category (the popu-
lation proportion) is the sample proportion

p̂ = x
n

, (7-8)

where x is the number of observations in the category and n is the total
number of observations.

A large sample (1− α)100% confidence interval for p is given as

p̂± z1−α/2

√
p̂(1− p̂)

n
. (7-9)

Remark 7.4

As a rule of thumb the normal distribution is a good approximation of the
binomial distribution if np and n(1− p) are both greater than 15.

Example 7.5

In the figure below we have some examples of binomial distributions. When we
reach a size where np ≥ 15 and n(1 − p) ≥ 15 it seems reasonable that the bell-
shaped normal distribution will be a good approximation.
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Example 7.6

If we return to the survey in Example 7.2, we can now calculate the 95% confidence
interval for the probability (i.e. the proportion willing to pay more for petrol to help
the environment).

We found the estimate of p by the observed proportion to p̂ = 518
1154 = 0.45. The

standard error of the proportion estimate is

σ̂p̂ =
√

p̂(1− p̂)/n =
√

0.45 · 0.55/1154 = 0.0146.

Since we have np̂ = 1154 · 0.45 = 519.3 and n(1− p̂) = 1154 · 0.55 = 634.7, both
greater than 15, we can use the expression from Method 7.3 to get the 95% confidence
interval

p̂± 1.96 · σ̂p̂ = 0.45± 1.96 · 0.0146 = [0.42, 0.48].

From this we can now conclude that our best estimate of the proportion willing to
pay more for petrol to protect the environment is 0.45, and that the true proportion
with 95% certainty is between 0.42 and 0.48. We see that 0.5 is not included in the
confidence interval, hence we can conclude that the proportion willing to pay more
for petrol is less than 0.5 (using the usual α = 0.05 significance level). We will cover
hypothesis testing for proportions more formally below.
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Remark 7.7 What about small samples then?

There exist several ways of expressing a valid confidence interval for p in
small sample cases, that is, when either np ≤ 15 or n(1− p) ≤ 15. We men-
tion three of these here - only for the last one we give the explicit formula:

Continuity correction

The so-called continuity correction is a general approach to making the
best approximation of discrete probabilities (in this case the binomial
probabilities) using a continuous distribution, (in this case the normal
distribution). We do not give any details here. In fact, a version of such
a correction is the default of the R-function prop.test.

Exact intervals

Probably the most well known of such small sample ways of obtain-
ing a valid confidence interval for a proportion is the so-called exact
method based on actual binomial probabilities rather than a normal
approximation. It is not possible to give a simple formula for these
confidence limits, and we will not explain the details here, but simply
note that they can be obtained by the R-function binom.test. These
will be valid no matter the size of n and p.

“Plus 2”-approach

Finally, a simple approach to a good small sample confidence inter-
val for a proportion, will be to us the simple formula given above in
Method 7.3, but applied to x̃ = x + 2 and ñ = n + 4.
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Remark 7.8 Confidence intervals for single proportions in R

In R we can use either the function prop.test or binom.test to find the
confidence interval of a single proportion (and some hypothesis testing in-
formation to be described below).

The binom.test uses the exact approach. The prop.test uses a version of
the continuity correction as default and something yet different again when
a continuity correction is not applied (using the option correct=FALSE).

Therefore: none of these (three different) intervals calculated by R coincides
exactly with the formula given in Method 7.3, neither applied to x and n nor
applied to x̃ = x + 2 and ñ = n + 4. And vice versa: the exact computational
details of the three different intervals (i.e. with the default correct=TRUE)
calculated by R are not given in the text here.

7.2.1 Testing hypotheses

Hypothesis testing for a single proportion (or probability) p is presented in this
section.

The first step is to formulate the null hypothesis and the alternative as well as
choosing the level of significance α. The null hypothesis for a proportion has
the form

H0 : p = p0 (7-10)

where p0 is a chosen value between 0 and 1. In Example 7.2, we could be in-
terested in testing whether half of the population, from which the sample was
taken, would be willing to pay more for petrol, hence p0 = 0.5.

The alternative hypothesis is the two-sided alternative

H1 : p 6= p0. (7-11)
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Remark 7.9

As for the t-tests presented in Chapter 3, we can also have one-sided tests
for proportions, i.e. the “less than” alternative

H0 : p ≥ p0 (7-12)
H1 : p < p0, (7-13)

and the “greater than” alternative

H0 : p ≤ p0 (7-14)
H1 : p > p0, (7-15)

however these are not included further in the material, see the discussion in
Section 3.1.7 (from page 154 in the book), which applies similarly here.

The next step is to calculate a test statistic as a measure of how well our data fits
the null hypothesis. The test statistic measures how far our estimate p̂ is from
the value p0 relative to the uncertainty – under the scenario that H0 is true.

So, under H0 the true proportion is p0 and the standard error is
√

p0(1− p0)/n,
thus to measure the distance between p̂ and p0 in standard deviations we cal-
culate the test statistic

zobs = x− np0√
np0(1− p0)

. (7-16)

When H0 is true, the test statistic seen as a random variable is

Z = p̂− p0√
p0(1− p0)/n

= X− np0√
np0(1− p0)

, (7-17)

and follows approximately a standard normal distribution Z ∼ N(0, 1), when
n is large enough:

Theorem 7.10

In the large sample case the random variable Z follows approximately a
standard normal distribution

Z = X− np0√
np0(1− p0)

∼ N(0, 1), (7-18)

when the null hypothesis is true. As a rule of thumb, the result will be valid
when both np0 > 15 and n(1− p0) > 15 .
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We can use this to make the obvious explicit method for the hypothesis test:

Method 7.11 One sample proportion hypothesis test

1. Compute the test statistic using Equation (7-16)

zobs = x− np0√
np0(1− p0)

2. Compute evidence against the null hypothesis

H0 : p = p0, (7-19)

vs. the the alternative hypothesis

H1 : p 6= p0, (7-20)

by the

p-value = 2 · P(Z > |zobs|). (7-21)

where the standard normal distribution Z ∼ N(0, 12) is used

3. If the p-value < α we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±z1−α/2:
if |zobs| > z1−α/2 we reject H0, otherwise we accept H0

Example 7.12

To conclude Example 7.2 we want to test the null hypothesis

H0 : p = 0.5,

against the alternative

H1 : p 6= 0.5.
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We have chosen α = 0.05, hence the critical value is the 0.975 quantile in the stan-
dard normal distribution z1−α/2 = 1.96. Thus we get the observed value of the test
statistic by

zobs = 518− 577√
1154 · 0.5 · (1− 0.5)

= −3.47.

Since z = −3.47 < −1.96 then we reject H0. The p-value is calculated as the proba-
bility of observing zobs or more extreme under the null hypothesis

2 · P(Z ≥ 3.47) = 0.0005.

We can get this directly using R:

# Testing the probability = 0.5 with a two-sided alternative
# We have observed 518 out of 1154
# Do it without continuity corrections

prop.test(x=518, n=1154, p = 0.5, correct = FALSE)

1-sample proportions test without continuity correction

data: 518 out of 1154, null probability 0.5
X-squared = 12, df = 1, p-value = 0.0005
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4204 0.4777

sample estimates:
p

0.4489

Note that the results are exactly the same as when calculated by hand even though
the test statistic used is actually Z2 ∼ χ2 with one degree of freedom, since this is
the same as saying Z ∼ N(0, 1). This is explained in detail later in the chapter.

7.2.2 Sample size determination

Before conducting a study, it is important to consider the sample size needed to
achieve a wanted precision. In the case with a single probability to estimate, we
see that the error we make when using the estimator p̂ = x

n is given by
∣∣ x

n − p
∣∣.

Using the normal approximation (see Theorem 7.3) we can conclude that the
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error will be bounded by

∣∣∣ x
n
− p

∣∣∣ < z1−α/2

√
p(1− p)

n
, (7-22)

with probability 1− α. Thus the Margin of Error (ME) of the estimate becomes

ME = z1−α/2

√
p(1− p)

n
. (7-23)

Similar to the method given for quantitative data in Method 3.63, we can use
Equation (7-23) to determine the needed sample size in a single proportions
setup. Solving for n we get:

Method 7.13 Sample size formula for the CI of a proportion

Given some “guess” (scenario) of the size of the unknown p, and given some
requirement to the ME-value (required expected precision) the necessary
sample size is then

n = p(1− p)
(z1−α/2

ME

)2
. (7-24)

If p is unknown, a worst case scenario with p = 1/2 is applied and necessary
sample size is

n = 1
4

(z1−α/2

ME

)2
. (7-25)

The expression in Equation (7-25) for n when no information about p is available
is due to the fact that p(1− p) is largest for p = 1/2, so the required sample size
will be largest when p = 1/2.

Method 7.13 can be used to calculate the sample size for a given choice of ME.

7.3 Comparing proportions in two populations

For categorical variables we sometimes want to compare the proportions in two
populations (groups). Let p1 denote the proportion in group 1 and p2 the pro-
portion in group 2. We will compare the groups by looking at the difference in
proportions p1 − p2, which is estimated by p̂1 − p̂2.
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Example 7.14

In a study in the US (1975) the relation between intake of contraceptive pills (birth
control pills) and the risk of blood clot in the heart was investigated. The following
data were collected from a participating hospital:

Contraceptive pill No pill
Blood clot 23 35
No blood clot 34 132
Total 57 167

We have a binary outcome blood clot (yes or no) and two groups (pill or no pill). As
in Section 7.2 we find that the best estimates of the unknown probabilities are the
observed proportions

p̂1 = "Number of blood clots in the pill group"
"Number of women in the pill group"

= 23
57

= 0.4035, (7-26)

p̂2 = "Number of blood clots in the no pill group"
"Number of women in the no pill group"

= 35
167

= 0.2096. (7-27)

The difference in probabilities is estimated to be

p̂1 − p̂2 = 0.4035− 0.2096 = 0.1939. (7-28)

Thus the observed probability of getting a blood clot, was 0.1939 higher in the con-
traceptive pill group than in the no pill group.

We have the estimate p̂1 − p̂2 of the difference in probabilities p1 − p2 and the
uncertainty of this estimate can be calculated by:
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Method 7.15

An estimate of the standard error of the estimator p̂1 − p̂2 is

σ̂p̂1− p̂2 =

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
. (7-29)

The (1− α)100% confidence interval for the difference p1 − p2 is

( p̂1 − p̂2)± z1−α/2 · σ̂p̂1− p̂2 . (7-30)

This confidence interval requires independent random samples for the two
groups and large enough sample sizes n1 and n2. A rule of thumb is that
ni pi ≥ 10 and ni(1− pi) ≥ 10 for i = 1, 2, must be satisfied.

Remark 7.16

The standard error in Method 7.15 can be calculated by

V( p̂1 − p̂2) = V( p̂1) + V( p̂2) = σ̂2
p̂1

+ σ̂2
p̂2

, (7-31)

σ̂p̂1− p̂2 =
√

V( p̂1 − p̂2) =
√

σ̂2
p̂1

+ σ̂2
p̂2

. (7-32)

Notice, that the standard errors are added (before the square root) such that
the standard error of the difference is larger than the standard error for the
observed proportions alone. Therefore in practice the estimate of the differ-
ence p̂1 − p̂2 will often be further from the true difference p1 − p2 than p̂1
will be from p1 or p̂2 will be from p2.

Example 7.17

Returning to Example 7.14 where we found the estimated difference in probability
to be

p̂1 − p̂2 = 0.4035− 0.2096 = 0.1939. (7-33)

The estimated standard error of the estimate is

σ̂p̂1− p̂2 =
√

0.4035(1− 0.4035)
57

+ 0.2096(1− 0.2096)
167

= 0.0722. (7-34)

A 99% confidence interval for this difference is then

( p̂1 − p̂2)± z0.995 · σ̂p̂1− p̂2 = 0.1939± 2.5758 · 0.0722 = [0.0079, 0.3799]. (7-35)
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Hence our best estimate of the difference is 0.19 and with very high confidence the
true difference is between 0.008 and 0.38.

We find that 0 is not included in the confidence interval, so 0 is not a plausible value
for the difference p1 − p2. The values in the confidence interval are all positive and
therefore we can conclude that (p1 − p2) > 0, that is p1 > p2, i.e. the probability of
blood clot is larger in the contraceptive pill group than in the no pill group.

We can also compare the two proportions p1 and p2 using a hypothesis test. As
in Method 7.11, there are four steps when we want to carry out the test. The
first step is to formulate the hypothesis and the alternative.

The null hypothesis is H0 : p1 = p2 and we will denote the common proportion
p, and choose a two-sided alternative H1 : p1 6= p2.

In the second step we calculate a test statistic measuring how far p̂1 − p̂2 falls
from 0, which is the value of p1 − p2 under H0.

Under H0, we only have one proportion p (since p1 = p2 = p). The best estima-
tor for this common proportion is the overall observed proportion

p̂ = x1 + x2

n1 + n2
. (7-36)

When the two sample sizes n1 and n2 are similar, this pooled estimate of the
overall proportion will be approximately half way between p̂1 and p̂2, but oth-
erwise the pooled estimate will be closest to the estimate from the largest sample
size.



Chapter 7 7.3 COMPARING PROPORTIONS IN TWO POPULATIONS 329

Method 7.18 Two sample proportions hypothesis test

The two-sample hypothesis test for comparing two proportions is given by
the following procedure:

1. Compute, with p̂ = x1+x2
n1+n2

, the test statistic

zobs = p̂1 − p̂2√
p̂(1− p̂)

(
1

n1
+ 1

n2

) (7-37)

2. Compute evidence against the null hypothesis

H0 : p1 = p2, (7-38)

vs. the the alternative hypothesis

H1 : p1 6= p2, (7-39)

by the

p-value = 2 · P(Z > |zobs|). (7-40)

where the standard normal distribution Z ∼ N(0, 12) is used

3. If the p-value < α we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±z1−α/2:
if |zobs| > z1−α/2 we reject H0, otherwise we accept H0

Example 7.19

In Example 7.17 we tested whether the probability of blood clot is the same for the
group taking the pills as for the group without pills using the CI. The null hypothesis
and alternative are

H0 : p1 = p2,

H1 : p1 6= p2.

This time we will test on a 1% significance level (α = 0.01).



Chapter 7 7.4 COMPARING SEVERAL PROPORTIONS 330

The pooled estimate of the probability of blood clot under H0 is

p̂ = 23 + 35
57 + 167

= 0.259,

which is closest to the estimate from the largest group p̂2 = 0.210.

According to Method 7.15 the test statistic is

zobs = p̂1 − p̂2√
p̂(1− p̂)( 1

n1
+ 1

n2
)

= 0.194√
0.259(1− 0.259)( 1

57 + 1
167 )

= 2.89.

The p-value is calculated by looking up zobs in a standard normal distribution (i.e.
N(0, 1))

2P(Z ≥ 2.89) = 0.0039 < 0.01.

As the p-value is less than 0.01 we can reject the null hypothesis of equal probabili-
ties in the two groups.

Instead of doing all the calculations in steps, we can use the function prop.test() to
test the hypothesis (remember prop.test() calculates Z2 instead of Z as explained
later in the chapter).

# Testing that the probabilities for the two groups are equal
# Calculating 99% confindece interval
prop.test(x=c(23,35), n=c(57,167), correct=FALSE, conf.level=0.99)

2-sample test for equality of proportions without continuity
correction

data: c(23, 35) out of c(57, 167)
X-squared = 8.3, df = 1, p-value = 0.004
alternative hypothesis: two.sided
99 percent confidence interval:
0.007922 0.379934

sample estimates:
prop 1 prop 2
0.4035 0.2096

7.4 Comparing several proportions

In the previous Section 7.3, we were interested in comparing proportions from
two groups. In some cases we might be interested in proportions from two
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or more groups, or in other words if several binomial distributions share the
same parameter p. The data can be setup in a 2× c table, where "Success" is the
response we are studying (e.g. a blood clot occurs) and "Failure" is when the
response does not occur (e.g. no blood clot).

Group 1 Group 2 ... Group c Total
Success x1 x2 ... xc x
Failure n1 − x1 n2 − x2 ... nc − xc n− x

Total n1 n2 ... nc n

We are then interested in testing the null hypothesis

H0 : p1 = p2 = . . . = pc = p (7-41)

against the alternative hypothesis: that the probabilities are not equal (or more
precisely: that that at least one of the probabilities is different from the others).

Under H0 the best estimator for the common p is the overall observed propor-
tion

p̂ = x
n

. (7-42)

To test the null hypothesis, we need to measure how likely it is to obtain the
observed data (or more extreme) under the null hypothesis. So, under the sce-
nario that the null hypothesis is true, we can calculate the expected number of
successes in the jth group as

e1j = nj · p̂ = nj ·
x
n

, (7-43)

and the expected number of failures is

e2j = nj · (1− p̂) = nj ·
(n− x)

n
. (7-44)

Notice, that the expected number for a cell is calculated by multiplying the row
and column totals for the row and column, where the cell belongs and then
dividing by the grand total n.
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Method 7.20 The multi-sample proportions χ2-test

The hypothesis

H0 : p1 = p2 = . . . = pc = p, (7-45)

can be tested using the test statistic

χ2
obs =

2

∑
i=1

c

∑
j=1

(oij − eij)2

eij
, (7-46)

where oij is the observed number in cell (i, j) and eij is the expected number
in cell (i, j).

The test statistic χ2
obs should be compared with the χ2-distribution with c− 1

degrees of freedom.

The χ2-distribution is approximately the sampling distribution of the statis-
tics under the null hypothesis. The rule of thumb is that it is valid when all
the computed expected values are at least 5: eij ≥ 5.

The test statistic in Method 7.20 measures the distance between the observed
number in a cell and what we would expect if the null hypothesis is true. If the
hypothesis is true then χ2 has a relatively small value, as most of the cell counts
will be close to the expected values. If H0 is false, some of the observed values
will be far from the expected resulting in a larger χ2.

Example 7.21

Returning to Example 7.19 we can consider a 2× 2 table as a case of a 2× c table.
We can organize our table with "Success" and "Failure" in the rows and groups as
the columns.

Contraceptive pill No pill Total
Blood clot 23 35 58
No blood clot 34 132 166
Total 57 167 224

Here x = 23 + 35 = 58 and n = 224

For each cell we can now calculate the expected number if H0 is true. For the pill
and blood clot cell we get

e1,1 = 58 · 57
224

= 14.76, (7-47)
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but we only observed 23 cases.

For the no pill and blood clot cell we get

e1,2 = 58 · 167
224

= 43.24, (7-48)

which is more than the observed 35 cases.

In the following table we have both the observed and expected values.

Birth control pill No birth control pill Total
Blood clot o11 = 23 o12 = 35 x = 58

e11 = 14.76 e12 = 43.24
No blood clot o21 = 34 o22 = 132 (n− x) = 166

e21 = 42.24 o22 = 123.8
Total n1 = 57 n2 = 167 n = 224

The observed χ2 test statistic can be calculated

χ2
obs = (23− 14.76)2

14.76
+ (35− 43.24)2

43.24
+ (34− 42.24)2

42.24
+ (132− 123.8)2

123.8
= 8.33.

(7-49)

We then find the p-value, by calculating how likely it is to get 8.33 or more extreme if
the null hypothesis is true, using the χ2 distribution with c− 1 = 2− 1 = 1 degrees
of freedom

p-value = P(χ2 ≥ 8.33) = 0.0039, (7-50)

which is exactly the same as the result in Example 7.14. Do the same with the
chisq.test() function in R:
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# Reading the data into R
pill.study <- matrix(c(23, 35, 34, 132), ncol = 2, byrow = TRUE)
rownames(pill.study) <- c("Blood Clot", "No Clot")
colnames(pill.study) <- c("Pill", "No pill")
pill.study

Pill No pill
Blood Clot 23 35
No Clot 34 132

# Chi^2 test for tesing that the distribution for the two groups are equal
chisq.test(pill.study, correct = FALSE)

Pearson's Chi-squared test

data: pill.study
X-squared = 8.3, df = 1, p-value = 0.004

# If we want the expected numbers, then store the result in a variable
chi <- chisq.test(pill.study, correct = FALSE)

# In the result the expected values can be found
chi$expected

Pill No pill
Blood Clot 14.76 43.24
No Clot 42.24 123.76

In Section 7.3 we presented a z-test for the hypothesis H0 : p1 = p2, where

zobs = p̂1 − p̂2√
p̂(1− p̂)( 1

n1
+ 1

n2
)

,

and in this section we have just seen a χ2 test that can also be used for 2× 2
tables. Using some algebra it turns out that the two tests are equivalent

χ2
obs = z2

obs, (7-51)

and they give exactly the same p-value for testing H0 : p1 = p2 against H1 :
p1 6= p2.
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7.5 Analysis of Contingency Tables

Until now we have been looking at 2× c tables, but we can also have a more
general setup with r × c tables that arise when two categorical variables are
cross-tabulated. Such tables usually arise from two kinds of studies. First, we
could have samples from several groups (as in Section 7.4), but allowing for
more than two outcome categories. An example of this could be an opinion poll,
where three samples were taken at different time points by asking randomly
selected people whether they supported either: Candidate 1, Candidate 2 or
were undecided. Here we want to compare the distribution of votes for the
three groups (i.e. over time).

The other setup giving rise to an r× c table is when we have samples with two
paired categorical variables with same categories (i.e. both variables are mea-
sured on each observational unit). This might happen if we had a sample of
students and categorized them equivalently according to their results in En-
glish and mathematics (e.g. good, medium, poor). These tables are also called
contingency tables.

The main difference between the two setups is: in the first setup the column
totals are the size of each sample (i.e. fixed to the sample sizes), whereas in the
second setup the column totals are not fixed (i.e. they count outcomes and the
grand total is fixed to the sample size). However, it turns out that both setups
are analysed in the same way.

7.5.1 Comparing several groups

In the situation comparing several groups, the hypothesis is that the distribu-
tion is the same in each group

H0 : pi1 = pi2 = . . . = pic = pi, for all rows i = 1, 2, . . . , r. (7-52)

So the hypothesis is that the probability of obtaining an outcome in a row cate-
gory does not depend on the given column.

As in Section 7.4 we need to calculate the expected number in each cell under
H0

eij = "jth column total" · "ith row total"
"grand total"

= nj ·
xi

n
. (7-53)
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Method 7.22 The r× c frequency table χ2-test

For an r× c table the hypothesis

H0 : pi1 = pi2 = . . . = pic = pi, for all rows i = 1, 2, . . . , r, (7-54)

is tested using the test statistic

χ2
obs =

r

∑
i=1

c

∑
j=1

(oij − eij)2

eij
. (7-55)

where oij is the observed number in cell (i, j) and eij is the expected number
in cell (i, j). This test statistic should be compared with the χ2-distribution
with (r− 1)(c− 1) degrees of freedom and the hypothesis is rejected at sig-
nificance level α if

χ2
obs > χ2

1−α

(
(r− 1)(c− 1)

)
. (7-56)

From Method 7.22, we see that we use the same test statistic as for 2× c tables
measuring the distance between the observed and expected cell counts. The
degrees of freedom (r− 1)(c− 1) occurs because only (r− 1)(c− 1) of the ex-
pected values eij need to be calculated – the rest can be found by subtraction
from the relevant row or column totals.

Example 7.23

An opinion poll has been made at three time points (4 weeks, 2 weeks and 1 week
before the election) each time 200 participants was asked who they would vote for:
Candidate 1, Candidate 2 or were undecided. The following data was obtained:

4 weeks before 2 weeks before 1 week before Row total
Candidate 1 79 91 93 263
Candidate 2 84 66 60 210
Undecided 37 43 47 127
Column total 200 200 200 600

Note, that in this poll example the sample sizes are equal (i.e. n1 = n2 = n3 = 200),
however that is not a requirement.
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We want to test the hypothesis that the votes are equally distributed in each of the
three polls

H0 : pi1 = pi2 = pi3, for all rows i = 1, 2, 3. (7-57)

The expected number of votes under H0 is calculated for the "Candidate 2" - "2 weeks
before" cell of the table

e22 = "2’nd column total" · "2’nd row total"
"grand total"

= 210 · 200
600

= 70. (7-58)

Continuing in the same way we can calculate all the expected cell counts:

4 weeks before 2 weeks before 1 week before
Candidate 1 o11 = 79 o12 = 91 o13 = 93

e11 = 87.67 e12 = 87.67 e13 = 87.67
Candidate 2 o21 = 84 o22 = 66 o23 = 60

e21 = 70.00 e22 = 70.00 e23 = 70.00
Undecided o31 = 37 o32 = 43 o33 = 47

e31 = 42.33 e32 = 42.33 e33 = 42.33

Looking at this table, it seems that 4 weeks before, Candidate 1 has less votes than
expected while Candidate 2 has more, but we need to test whether these differences
are statistically significant.

We can test the hypothesis in Equation (7-52) using a χ2 test with (3− 1)(3− 1) = 4
degrees of freedom.

However, first we will calculate the observed column percentages and plot them:
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# Reading the data into R
poll <- matrix(c(79, 91, 93, 84, 66, 60, 37, 43, 47), ncol = 3,

byrow = TRUE)
colnames(poll) <- c("4 weeks", "2 weeks", "1 week")
rownames(poll) <- c("Cand1", "Cand2", "Undecided")

# Column percentages
colpercent <- prop.table(poll, 2)
colpercent

4 weeks 2 weeks 1 week
Cand1 0.395 0.455 0.465
Cand2 0.420 0.330 0.300
Undecided 0.185 0.215 0.235

barplot(t(colpercent), beside = TRUE, col = 2:4, las = 1,
ylab = "Percent each week", xlab = "Candidate",
main = "Distribution of Votes")

legend( legend = colnames(poll), fill = 2:4,"topright", cex = 0.7)
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From the bar plot it could seem that the support for Candidate 2 decreases as the
election approaches, but we need to test whether this is significant. In the following
R code the hypothesis, stating that the distribution at each time point is the same, is
tested:
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# Testing same distribution in the three populations
chi <- chisq.test(poll, correct = FALSE)
chi

Pearson's Chi-squared test

data: poll
X-squared = 7, df = 4, p-value = 0.1

# Expected values
chi$expected

4 weeks 2 weeks 1 week
Cand1 87.67 87.67 87.67
Cand2 70.00 70.00 70.00
Undecided 42.33 42.33 42.33

From the χ2 test we get an observed test statistic of 6.96, and we must now calculate
how likely it is to obtain this value or more extreme from a χ2-distribution with 4
degrees of freedom. It leads to a p-value of 0.14, so we accept the null hypothesis
and find that there is no evidence showing a change in distribution among the three
polls.

7.5.2 Independence between the two categorical variables

When the only fixed value is the grand total, then the hypothesis we are inter-
ested in concerns independence between the two categorical variables

H0 : "The two variables are independent",
H1 : "The two variables are not independent (they are associated)".

(7-59)

Using the cell proportions pij the null hypothesis can be written as:



Chapter 7 7.5 ANALYSIS OF CONTINGENCY TABLES 340

Theorem 7.24

To test if two categorical variables are independent the null hypothesis

H0 : pij = pi.p.j for all i, j, (7-60)

where pi. = ∑c
j=1 pij is the proportion of row i and p.j = ∑r

i=1 pij is the
proportion of column j, is tested.

The p-value for the observed result under this null hypothesis is calculated
using the χ2 test statistic from Method 7.22.

Example 7.25

A group of 400 students have had an English test and a mathematics test. The results
of each test a categorized as either bad, average or good.

English Mathematics
Bad Average Good Row total

Bad 23 60 29 112
Average 28 79 60 167
Good 9 49 63 121
Column total 60 188 152 400

We want to test the hypothesis of independence between results in English and
mathematics. First we read the data into R and calculate proportions and totals:

# Reading the data into R
results <- matrix(c(23, 60, 29, 28, 79, 60, 9, 49, 63), ncol = 3,

byrow = TRUE)
colnames(results) <- c("MathBad", "MathAve", "MathGood")
rownames(results) <- c("EngBad", "EngAve", "EngGood")
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# Percentages
prop.table(results)

MathBad MathAve MathGood
EngBad 0.0575 0.1500 0.0725
EngAve 0.0700 0.1975 0.1500
EngGood 0.0225 0.1225 0.1575

# Row totals
margin.table(results, 1)

EngBad EngAve EngGood
112 167 121

# Column totals
margin.table(results, 2)

MathBad MathAve MathGood
60 188 152

We want to calculate the expected cell count if H0 is true. Consider the events "good
English result" and "good mathematics result" corresponding to cell (3, 3). Under
the hypothesis of independence, we have

p33 = P("Good English and Good Maths") = P("Good English") · P("Good Maths")
(7-61)

From the calculated row and column totals, we would estimate

p̂33 =
(

121
400

)
·
(

152
400

)
, (7-62)

and out of 400 students we would expect

e33 = 400 · p̂33 = 400 ·
(

121
400

)
·
(

152
400

)
= 121 · 152

400
= 45.98. (7-63)

The method of calculating the expected cell counts is exactly as before. For the
“Good English and Good Mathematics” cell the expected value is less than the ob-
served 63. Continuing in this way, we can calculate all the expected cell counts:

English Mathematics
Bad Average Good

Bad o11 = 23 o12 = 60 o13 = 29
e11 = 16.80 e12 = 52.64 e13 = 42.56

Average o21 = 28 o22 = 79 o23 = 60
e21 = 25.05 e22 = 78.49 e23 = 63.46

Good o31 = 9 o32 = 49 o33 = 63
e31 = 18.15 e32 = 56.87 e33 = 45.98
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We can see that we have more students than expected in the Good - Good cell and
less than expected in the two Bad - Good cells. We can now test the hypothesis of
independence between English and mathematics results:

# Testing independence between english and maths results
chi <- chisq.test(results, correct = FALSE)
chi

Pearson's Chi-squared test

data: results
X-squared = 20, df = 4, p-value = 0.0005

# Expected values
chi$expected

MathBad MathAve MathGood
EngBad 16.80 52.64 42.56
EngAve 25.05 78.49 63.46
EngGood 18.15 56.87 45.98

The χ2-test gives a test statistic of 20.18, which under H0 follows a χ2-distribution
with 4 degrees of freedom leading to a p-value of 0.0005. This means that the hy-
pothesis of independence between English and mathematics results is rejected.

Even though the hypothesis were formulated differently in the first setup when
comparing several groups, compared to the second setup with the hypothesis on
independence of two categorical variables, it turns out that the first hypothesis (7-52)
is also about independence. Two events are independent if

P(A and B) = P(A) · P(B), (7-64)

which expresses: the probability of both event A and event B occurring is equal
to the probability of event A occurring times the probability of event B occuring.

Another way of defining independence of two variables is through condition-
ing. Two events are independent if

P(A|B) = P(A), (7-65)

which states: the probability of event A does not change if we have informa-
tion about B. In the first Example 7.23 the probability of voting for Candidate
1 is the same irrespective of week and therefore the distribution in one week is
independent of the results from the other weeks.
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7.6 Exercises

Exercise 7.1 Passing proportions

To compare the level of 2 different courses at a university the following grades
distributions (given as number of pupils who achieved the grades) were regis-
tered:

Course 1 Course 2 Row total
Grade 12 20 14 34
Grade 10 14 14 28
Grade 7 16 27 43
Grade 4 20 22 42
Grade 2 12 27 39
Grade 0 16 17 33
Grade -3 10 22 32
Column total 108 143 251

The passing proportions for the two courses, p1 and p2 should be compared. As
the grades -3 and 0 means not passed, we get the following table of the number
of students:

Course 1 Course 2 Row total
Passed 82 104 186
Not passed 26 39 65
Column total 108 143 251

a) Compute a 95% confidence interval for the difference between the two
passing proportions.

b) What is the critical values for the χ2-test of the hypothesis H0 : p1 = p2
with significance level α = 0.01?

c) If the passing proportion for a course given repeatedly is assumed to be
0.80 on average, and there are 250 students who are taking the exam each
time, what is the expected value, µ and standard deviation, σ, for the num-
ber of students who do not pass the exam for a randomly selected course?
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Exercise 7.2 Outdoor lighting

A company that sells outdoor lighting, gets a lamp produced in 3 material vari-
ations: in copper, with painted surface and with stainless steel. The lamps are
sold partly in Denmark and partly for export. For 250 lamps the distribution of
sales between the three variants and Denmark/export are depicted. The data is
shown in the following table:

Country
Danmark Export

Copper variant 7.2% 6.4%
Painted variant 28.0% 34.8%
Stainless steel variant 8.8% 14.8%

a) Is there a significant difference between the proportion exported and the
proportion sold in Denmark (with α = 0.05)?

b) The relevant critical value to use for testing whether there is a significant
difference in how the sold variants are distributed in Denmark and for
export is (with α = 0.05)?

Exercise 7.3 Local elections

At the local elections in Denmark in November 2013 the Social Democrats (A)
had p = 29.5% of the votes at the country level. From an early so-called exit
poll it was estimated that they would only get 22.7% of the votes. Suppose the
exit poll was based on 740 people out of which then 168 people reported having
voted for A.

a) At the time of the exit poll the p was of course not known. If the following
hypothesis was tested based on the exit poll

H0 : p = 0.295
H1 : p 6= 0.295,

what test statistic and conclusion would then be obtained with α = 0.001?
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b) Calculate a 95%-confidence interval for p based on the exit poll.

c) Based on a scenario that the proportion voting for particular party is around
30%, how large an exit poll should be taken to achieve a 99% confidence
interval having a width of 0.01 in average for this proportion?

Exercise 7.4 Sugar quality

A wholesaler needs to find a supplier that delivers sugar in 1 kg bags. From two
potential suppliers 50 bags of sugar are received from each. A bag is described
as ’defective’ if the weight of the filled bag is less than 990 grams. The received
bags were all control weighed and 6 defective from supplier A and 12 defective
from supplier B were found.

a) If the following hypothesis

H0 : pA = pB,
H1 : pA 6= pB.

is tested on a significance level of 5%, what is the p-value and conclusion?

b) A supplier has delivered 200 bags, of which 36 were defective. A 99%
confidence interval for p the proportion of defective bags for this supplier
is:

c) Based on the scenario, that the proportion of defective bags for a new sup-
plier is about 20%, a new study was planned with the aim of obtaining an
average width, B, of a 95% confidence interval. The Analysis Department
achieved the result that one should examine 1537 bags, but had forgotten
to specify which value for the width B, they had used. What was the value
used for B?
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Exercise 7.5 Physical training

A company wants to investigate whether the employees’ physical training con-
dition will affect their success in the job. 200 employees were tested and the
following count data were found:

Physical training condition
Below average Average Above average

Bad job succes 11 27 15
Average job succes 14 40 30
Good job succes 5 23 35

The hypothesis of independence between job success and physical training con-
dition is to be tested by the use of the for this setup usual χ2−test.

a) What is the expected number of individuals with above average training
condition and good job success under H0 (i.e. if H0 is assumed to be true)?

b) For the calculation of the relevant χ2-test statistic, identify the following
two numbers:

– A: the number of contributions to the test statistic

– B: the contribution to the statistic from table cell (1,1)

c) The total χ2-test statistic is 10.985, so the p-value and the conclusion will
be (both must be valid):
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Chapter 8

Comparing means of multiple groups
- ANOVA

8.1 Introduction

In Chapter 3 the test of difference in mean of two groups was introduced

H0 : µ1 − µ2 = δ0. (8-1)

Often we are interested in testing if the mean of the two groups are different
(H0 : µ1 = µ2), against the alternative (µ1 6= µ2). Often we will face a situ-
ation where we have data in multiple (more than two) groups leading to the
natural extension of the two-sample situation to a multi-sample situation. The
hypothesis of k groups having the same means can then be expressed as

H0 : µ1 = µ2 = · · · = µk. (8-2)

Or in words we have k groups (often referred to as treatments) and we want to
test if they all have the same mean against the alternative that at least one group
is different from the other groups. Note, that the hypothesis is not expressing
any particular values for the means, but just that they are all the same.

The purpose of the data analysis in such a multi-group situation can be ex-
pressed as a two-fold purpose:

1. Answer the question: are the group means (significantly) different (hy-
pothesis test)?

2. Tell the story about (or “quantify”) the groups and their potential differ-
ences (estimates and confidence intervals)
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The statistical analysis used for such an analysis is called one-way Analysis
of Variance (ANOVA). Though there is an initial contradiction in the name, as
ANOVA is used to compare the means of populations and not their variances,
the name should not be met with confusion. An ANOVA expresses how dif-
ferent the means of k populations are by measuring how much of the variance
in data is explained by grouping the observations (in other words: the variance
explained by fitting a model with a mean for each population). If enough of the
variation is explained, then a significant difference in population means can be
concluded.

The one-way ANOVA is the natural multi-sample extension of the indepen-
dent two-sample setup covered in Chapter 3. We will also present a natural
multi-sample extension of the two paired-sample situation from Chapter 3. This
generalization, where the k samples are somehow dependent, e.g. if the same
individuals are used in each of the groups, is called two-way ANOVA.

8.2 One-way ANOVA

8.2.1 Data structure and model

As mentioned above we assume that we have data from k groups, also assume
ni repetitions in group (i), this imply that we can order data in a table like:

Tr1 y11 . . . y1,n1
...

... . . .
Trk yk,1 . . . yk,nk

The total number of observations is n = ∑k
i=1 ni, note that there does not have

to be the same number of observations within each group (treatment).

As for the two-sample case in Chapter 3 there are some standard assumptions
that are usually made in order for the methods to come to be 100% valid. In
the case of one-way ANOVA, these assumptions are expressed by formulating
a “model” much like how regression models in Chapters 5 and 6 are expressed

Yij = µi + εij, εij ∼ N(0, σ2). (8-3)

The model is expressing that the observations come from a normal distribution
within each group, that each group (i) has a specific mean, and that the variance
is the same (σ2) for all groups. Further, we see explicitly that we have a number
of observations (ni) within each group (j = 1, . . . , ni).
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Figure 8.1: Conceptual plot for the ANOVA problem.

As noted above the relevant hypothesis to fulfil the first purpose of the analysis
is that of equal group means (8-2). It turns out that a slight modification of (8-3)
is convenient

Yij = µ + αi + εij, εij ∼ N(0, σ2). (8-4)

Now, the situation is described with a µ that corresponds to the overall mean
(across all groups), and then αi = µi − µ is the difference between each group
mean and the overall mean. The individual group mean is then µi = µ + αi,
and the null hypothesis is expressed as

H0 : α1 = · · · = αk = 0, (8-5)

with the alternative H1 : αi 6= 0 for at least one i. The concept is illustrated in
Figure 8.1 (for k = 3), the black dots are the measurements yij, the red line is the
overall average, red dots are the average within each group, and the blue lines
are the difference between group average and the overall average (α̂i).

Let’s have a look at an example, before we discuss the analysis in further details.
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Example 8.1 Basic example

The data used for Figure 8.1 is given by:

Group A Group B Group C
2.8 5.5 5.8
3.6 6.3 8.3
3.4 6.1 6.9
2.3 5.7 6.1

The question is of course: is there a difference in the means of the groups (A, B and
C)? We start by having a look at the observations:

y <- c(2.8, 3.6, 3.4, 2.3,
5.5, 6.3, 6.1, 5.7,
5.8, 8.3, 6.9, 6.1)

treatm <- factor(c(1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3))

plot(treatm,y)

1 2 3

3
4

5
6

7
8

x

y

By using factor the treatments are not considered as numerical values by R, but
rather as factors (or grouping variables), and the default plot is a box plot of the
within group variation. This plot gives information about the location of data and
variance homogeneity (the model assumption), of course with only 4 observations
in each group it is difficult to asses this assumption.

Now we can calculate the parameter estimates (µ̂ and α̂i) by:
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mu <- mean(y)
muis <- tapply(y, treatm, mean)
alpha <- muis - mu
mu

[1] 5.233

muis

1 2 3
3.025 5.900 6.775

alpha

1 2 3
-2.2083 0.6667 1.5417

So our estimate of the overall mean is µ̂ = 5.23, and the group levels (offsets from
the overall sample mean) are α̂1 = −2.21, α̂2 = 0.67 and α̂3 = 1.54. The question we
need to answer is: how likely is it that the observed differences in group means are
random variation? If this is very unlikely, then it can be concluded that at least one
of them is significantly different from zero.

The shown use of the tapply function is a convenient way of finding the mean of y
for each level of the factor treatm. By the way if the mean is substituted by any other
R-function, e.g. the variance, we could similarly find the sample variance within
each group (we will have a closer look at these later):

tapply(y, treatm, var)

1 2 3
0.3492 0.1333 1.2492

8.2.2 Decomposition of variability, the ANOVA table

A characteristic of ANOVA in general and one-way ANOVA specifically is the
fact that the overall variability (measured by the total variation) decomposes
into interpretable components – it is these components which are used for hy-
pothesis testing and more. For the one-way ANOVA presented in this section
the total variation, that is, the variation calculated across all the data completely
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ignoring the fact that the data falls in different groups, can be decomposed into
two components: a component expressing the group differences and a compo-
nent expressing the (average) variation within the groups:

Theorem 8.2 Variability decomposition

The total sum of squares (SST) can be decomposed into sum of squared
errors (SSE) and treatment sum of squares (SS(Tr))

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)2

︸ ︷︷ ︸
SSE

+
k

∑
i=1

ni(ȳi − ȳ)2

︸ ︷︷ ︸
SS(Tr)

, (8-6)

where

ȳ = 1
n

k

∑
j=1

ni

∑
j=1

yij, ȳi = 1
ni

ni

∑
j=1

yij. (8-7)

Expressed in short form

SST = SS(Tr) + SSE. (8-8)

Before we turn to the proof of the theorem, we will briefly discuss some in-
terpretations and implications of this. First we look at each of the three terms
separately.

The SST expresses the total variation. Let us compare with Equation (1-6) the
formula for sample variance

s2 = 1
n− 1

n

∑
i=1

(xi − x̄)2. (8-9)

We can see that if the sample variance formula is applied to the the yijs joined
into a single sample (i.e. a single index counts through all the n observations),
then the sample variance is simply SST divided by n− 1. The sample variance
expresses then the average variation per observation. Therefore, we have

SST = (n− 1) · s2
y, (8-10)

where s2
y is the sample variance for all the yijs seen as a single sample (i.e. a

sample from single population).

The group mean differences are quantified by the SS(Tr) component, which
can basically be seen directly from the definition, where the overall mean is



Chapter 8 8.2 ONE-WAY ANOVA 353

subtracted from each group mean. As discussed above it can alternatively be
expressed by deviations α̂i

SS(Tr) =
k

∑
i=1

ni(ȳi − ȳ)2 =
k

∑
i=1

niα̂
2
i , (8-11)

so SS(Tr) is the sum of squared αi’s multiplied by the number of observations
in group ni.

Remark 8.3

SS(Tr) is also the key expression to get the idea of why we call the whole
thing “analysis of variance”: if we, for a second, assume that we have the
same number of observations in each group: n1 = . . . = nk, and let us call
this common number m. Then we can express SS(Tr) directly in terms of the
variance of the k means

SS(Tr) = (k− 1) ·m · s2
means, (8-12)

where

s2
means = 1

k− 1

k

∑
i=1

(ȳi − ȳ)2. (8-13)

Let us emphasize that the formulas of this remark is not thought to be for-
mulas that we use for practical purposes, but they are expressed to show ex-
plicitly that “SS(Tr) quantifies the group differences by variation”. Another
way of thinking of SS(Tr) is that it quantifies the “the variance explained by
grouping the observations“, i.e. the variance explained by fitting a model
with a mean for each group.

Finally, SSE expresses the average variability within each group, as each in-
dividual observation yij is compared with the mean in the group to which it
belongs. In Figure 8.1 these are the differences between each of the black dots
with the relevant read dot. Again we can link the formula given above to basic
uses of the sample variance formula:
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Theorem 8.4 Within group variability

The sum of squared errors SSE divided by n − k, also called the residual
mean square MSE = SSE/(n − k) is the weighted average of the sample
variances from each group

MSE = SSE
n− k

=
(n1 − 1)s2

1 + · · ·+ (nk − 1)s2
k

n− k
, (8-14)

where s2
i is the variance within the ith group

s2
i = 1

ni − 1

ni

∑
j=1

(yij − ȳi)2. (8-15)

When k = 2, that is, we are in the two-sample case presented in Section 3.2,
the result here is a copy of the pooled variance expression in Method 3.52

For k = 2 : MSE = s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n− 2
. (8-16)

Intuitively, we would say that if some of the α̂i’s are large (in absolute terms),
then it is evidence against the null hypothesis of equal means. So a large SS(Tr)
value is evidence against the null hypothesis. It is also natural that “large”
should be relative to some variation. SSE is the within group variation, and it
also seems reasonable that if α̂i is large and the variation around µ̂i is small then
this is evidence against the null hypothesis. It does therefore seem natural to
compare SS(Tr) and SSE, and we will get back to the question of exactly how to
do this after the proof of Theorem 8.2:
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Proof

Add and subtract ȳi in SST to get

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2 =
k

∑
i=1

ni

∑
j=1

(yij − ȳi + ȳi − ȳ)2 (8-17)

=
k

∑
i=1

ni

∑
j=1

[
(yij − ȳi)2 + (ȳi − ȳ)2 + 2(yij − ȳi)(ȳi − ȳ)

]

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)2 +
k

∑
i=1

ni

∑
j=1

(ȳi − ȳ)2 + 2
k

∑
i=1

ni

∑
j=1

(yij − ȳi)(ȳi − ȳ)

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)2 +
k

∑
i=1

ni(ȳi − ȳ)2 + 2
k

∑
i=1

(ȳi − ȳ)
ni

∑
j=1

(yij − ȳi),

now observe that ∑ni
j=1(yij − ȳi) = 0, and the proof is completed.

�

Example 8.5

We can now continue our example and calculate SST, SSE, and SS(Tr):

SST <- sum((y - mu)^2)
SSE <- sum((y[treatm==1] - muis[1])^2)+

sum((y[treatm==2] - muis[2])^2)+
sum((y[treatm==3] - muis[3])^2)

SSTr <- 4 * sum(alpha^2)
c(SST, SSE, SSTr)

[1] 35.987 5.195 30.792

For these data we have that n1 = n2 = n3 = 4, so according to Theorem 8.2 we could
also find SSE from the average of the variances within each group:

vars <- tapply(y, treatm, var)
(12-3)*mean(vars)

[1] 5.195

Now we have established that we should compare SS(Tr) and SSE in some way,
it should of course be quantified exactly in which way they should be compared.
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Figure 8.2: pdf of the F-distribution with 2 and 9 degrees of freedom (black line),
and with 4 and 9 degrees of freedom (red line).

Now it turns out that the numbers SS(Tr)/(k − 1) and SSE/(n − k) are both
central estimators for σ2, when the null hypothesis is true, and we can state the
following theorem:

Theorem 8.6

Under the null hypothesis

H0 : αi = 0, i = 1, 2, . . . , k, (8-18)

the test statistic

F = SS(Tr)/(k− 1)
SSE/(n− k) , (8-19)

follows an F-distribution with k− 1 and n− k degrees of freedom.

The F-distribution is generated by the ratio between independent χ2 distributed
random variables, and the shape is shown in Figure 8.2 for two particular choices
of degrees of freedom.

As we have discussed before, the null hypothesis should be rejected if SS(Tr) is
large and SSE is small. This implies that we should reject the null hypothesis
when the test statistic (F) is large in the sense of Theorem 8.6 (compare with
F1−α). The statistics are usually collected in an ANOVA table like this:
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Source of Degrees of Sums of Mean sum of Test- p-
variation freedom squares squares statistic F value
Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 Fobs = MS(Tr)
MSE P(F > Fobs)

Residual n− k SSE MSE = SSE
n−k

Total n− 1 SST

Example 8.7

We can now continue with our example and find the F-statistic and the p-value:

F <- (SSTr/(3 - 1)/(SSE/(12 - 3)))
pv <- 1 - pf(F, df1 = 3 - 1, df2 = 12 - 3)
c(F , pv)

[1] 26.672281 0.000165

So we have a test statistic F = 26.7 and a p-value equal to 0.000165 and we reject the
null hypothesis on e.g. level α = 0.05. The calculations can of course also be done
directly in R, by:

anova(lm(y ~ treatm))

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

treatm 2 30.8 15.40 26.7 0.00017 ***
Residuals 9 5.2 0.58
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note, that in the direct R calculation it is very important to include treatm as a factor,
in order to get the correct analysis.

If we reject the null hypothesis, it implies that the observations can be finally
described by the initial model re-stated here

Yij = µ + αi + εij, εij ∼ N(0, σ2), (8-20)

and the estimate of the error variance σ2 is σ̂2 = SSE/(n− k) = MSE.
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Remark 8.8 When multiple groups = 2 groups

When k = 2, that is, we are in the two-sample case studied in Chapter 3, we
already saw above in Theorem 8.4 that MSE = s2

p. Actually, this means that
the analysis we get from a one-way ANOVA when we apply it for only k = 2
groups, which could be perfectly fine - nothing in the ANOVA approach
really relies on k having to be larger than 2 - corresponds to the pooled t-test
given as Method 3.53. More exact

for k = 2 : Fobs = t2
obs, (8-21)

where tobs is the pooled version coming from Methods 3.52 and 3.53. Thus
the p-value obtained from the k = 2 group ANOVA equals exactly the p-
value obtained from the pooled t-test given in Method 3.53.

8.2.3 Post hoc comparisons

If we reject the overall null hypothesis above, and hence conclude that αi 6= 0 for
at least one i it makes sense to ask which of the treatments are actually different.
That is, trying to meet the second of the two major purposes indicated in the
beginning. This can be done by pairwise comparison of the treatments. We
have already seen in Chapter 3, that such comparison could be based on the t-
distribution. We can construct confidence interval with similar formulas except
that we should use MSE = SSE/(n − k) as the estimate of the error variance
and hence also n− k degrees of freedom in the t-distribution:
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Method 8.9 Post hoc pairwise confidence intervals

A single pre-planned (1 − α) · 100% confidence interval for the difference
between treatment i and j is found as

ȳi − ȳj ± t1−α/2

√√√√MSE

(
1
ni

+ 1
nj

)
, (8-22)

where t1−α/2 is based on the t-distribution with n− k degrees of freedom.

If all M = k(k − 1)/2 combinations of pairwise confidence intervals are
calculated using the formula M times, but each time with αBonferroni = α/M
(see Remark 8.14 below).

Similarly one could do pairwise hypothesis tests:

Method 8.10 Post hoc pairwise hypothesis tests

A single pre-planned level α hypothesis tests

H0 : µi = µj, H1 : µi 6= µj, (8-23)

is carried out by

tobs =
ȳi − ȳj√

MSE
(

1
ni

+ 1
nj

) , (8-24)

and

p-value = 2 · P(T > |tobs|), (8-25)

where the t-distribution with n− k degrees of freedom is used.

If all M = k(k− 1)/2 combinations of pairwise hypothesis tests are carried
out use the approach M times but each time with test level αBonferroni = α/M
(see Remark 8.14 below).
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Example 8.11

Returning to our small example we get the pairwise confidence intervals. If the
comparison of A and B was specifically planned before the experiment was carried
out, we would find the 95%-confidence interval as:

muis[1] - muis[2] + c(-1, 1) *
qt(0.975, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -4.09 -1.66

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:

tobs <- (muis[1] - muis[2])/sqrt(SSE/(12 - 3) * (1/4 + 1/4))
2 * (1 - pt(abs(tobs), 9))

1
0.0004614

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =
0.016667:

alphaBonf <- 0.05/3
# A-B
alpha[1] - alpha[2] + c(-1, 1) *

qt(1-alphaBonf/2, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -4.451 -1.299

# A-C
alpha[1] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -5.326 -2.174

# B-C
alpha[2] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -2.4509 0.7009
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and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that now.

The so-called Bonferroni correction done above, when we do all possible post
hoc comparisons, has the effect that it becomes more difficult (than without the
correction) to claim that two treatments have different means.

Example 8.12

The 0.05/3-critical value with 9 degrees of freedom is t0.9917 = 2.933 whereas the
0.05-critical value is t0.975 = 2.262:

c(qt(1 - alphaBonf/2, 9), qt(0.975, 9))

[1] 2.933 2.262

So two treatment means would be claimed different WITH the Bonferroni correction
if they differ by more than half the width of the confidence interval

2.933 ·
√

SSE/9 · (1/4 + 1/4) = 1.576 (8-26)

whereas without the Bonferroni correction should only differ by more than

2.262 ·
√

SSE/9 · (1/4 + 1/4) = 1.215 (8-27)

to be claimed significantly different.

Remark 8.13 Least Significant Difference (LSD) values

If there is the same number of observations in each treatment group m =
n1 = . . . = nk the LSD value for a particular significance level

LSDα = t1−α/2
√

2 ·MSE/m (8-28)

will have the same value for all the possible comparisons made.
The LSD value is particularly useful as a “measuring stick” with which we
can go and compare all the observed means directly: the observed means
with difference higher than the LSD are significantly different on the α-level.
When used for all of the comparisons, as suggested, one should as level use
the Bonferroni corrected version LSDαBonferroni (see Remark 8.14 below for an
elaborated explanation).
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Remark 8.14 Significance by chance in multiple testings!

Imagine that we performed an ANOVA in a situation with k = 15 groups.
And then we do all the M = 15 · 14/2 = 105 possible pairwise hypothesis
tests. Assume for a moment that the overall null hypothesis is true, that
is, there really are no mean differences between any of the 15 groups. And
think about what would happen if we still performed all the 105 tests with
α = 0.05! How many significant results would we expect among the 105
hypothesis tests? The answer is that we expect α · 105 = 0.05 · 105 = 5.25,
that is, approximately 5 significant tests are expected. And what would the
probability be of getting at least one significant test out of the 105? The
answer to this question can be found using the binomial distribution

P("At least one significant result in 105 independent tests")
= 1− 0.95105

= 0.9954. (8-29)

So whereas we, when performing a single test, have a probability of α = 0.05
of getting a significant result, when we shouldn’t, we now have an overall
Type I error probability of seeing at least one significant result, when we
shouldn’t, of 0.9954! This is an extremely high (overall) Type 1 risk. This is
also sometimes called the “family wise” Type 1 risk. In other words, we will
basically always with k = 15 see at least one significant pairwise difference,
if we use α = 0.05. This is why we recommend to use a correction method
when doing multiple testings like this. The Bonferroni correction approach
is one out of several different possible approaches for this.

Using the Bonferroni corrected αBonferroni = 0.05/105 in this case for each of
the 105 tests would give the family wise Type 1 risk

P("At least one significant result in 105 independent tests")
= 1− (1− 0.05/105)105

= 0.049 (8-30)

8.2.4 Model control

The assumptions for the analysis we have applied in the one-way ANOVA
model are more verbally expressed as:
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1. The data comes from a normal distribution in each group

2. The variances from each group are the same

The homogeneous variances assumption can be controlled by simply looking at
the distributions within each sample, most conveniently for this purpose by the
group-wise box plot already used in the example above.

The normality within groups assumption could in principle also be investigated
by looking at the distributions within each group - a direct generalization of
what was suggested in Chapter 3 for the two-group setting. That is, one could
do a q-q plot within each group. It is not uncommon though, that the amount of
data within a single group is too limited for a meaningful q-q plot investigation.
Indeed for the example here, we have only 4 observations in each group, and
q-q plots for 4 observations do not make much sense.

There is an alternative, where the information from all the groups are pooled
together to a single q-q plot. If we pool together the 12 residuals, that is, within
group deviations, they should all follow the same zero-mean normal distribu-
tion, given by

εij ∼ N(0, σ2). (8-31)

Method 8.15 Normality control in one-way ANOVA

To control for the normality assumptions in one-way ANOVA we perform a
q-q plot on the pooled set of n estimated residuals

eij = yij − ȳi, j = 1, . . . , ni, i = 1 . . . , k. (8-32)

Example 8.16

For the basic example we get the normal q-q plot of the residuals by

residuals <- lm(y ~ treatm)$residuals
qqnorm(residuals)
qqline(residuals)



Chapter 8 8.2 ONE-WAY ANOVA 364

-1.5 -0.5 0.5 1.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Normal Q-Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

residuals

1 2 3 4 5 6 7 8 9 10
-0.225 0.575 0.375 -0.725 -0.400 0.400 0.200 -0.200 -0.975 1.525

11 12
0.125 -0.675

8.2.5 A complete worked through example: plastic types for lamps

Example 8.17 Plastic types for lamps

On a lamp two plastic screens are to be mounted. It is essential that these plastic
screens have a good impact strength. Therefore an experiment is carried out for 5
different types of plastic. 6 samples in each plastic type are tested. The strengths of
these items are determined. The following measurement data was found (strength
in kJ/m2):

Type of plastic
I II III IV V

44.6 52.8 53.1 51.5 48.2
50.5 58.3 50.0 53.7 40.8
46.3 55.4 54.4 50.5 44.5
48.5 57.4 55.3 54.4 43.9
45.2 58.1 50.6 47.5 45.9
52.3 54.6 53.4 47.8 42.5
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We run the following in R:

D <- data.frame(
strength=c(44.6, 52.8, 53.1, 51.5, 48.2, 50.5, 58.3, 50.0, 53.7, 40.8,

46.3, 55.4, 54.4, 50.5, 44.5, 48.5, 57.4, 55.3, 54.4, 43.9,
45.2, 58.1, 50.6, 47.5, 45.9, 52.3, 54.6, 53.4, 47.8, 42.5),

plastictype=factor(rep(1:5, 6))
)
plot(D$plastictype, D$strength, xlab="Plastictype", ylab="Strength")
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th

fit <- lm(strength ~ plastictype, data=D)
anova(fit)

Analysis of Variance Table

Response: strength
Df Sum Sq Mean Sq F value Pr(>F)

plastictype 4 492 122.9 18.2 4e-07 ***
Residuals 25 169 6.7
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA results are more nicely put in a table here:

Df Sum Sq Mean Sq F value Pr(>F)
Plastictype 4 491.76 122.94 18.23 4 · 10−7

Residuals 25 168.56 6.74

From the box plot we see that there appears to be group mean differences and ex-
tremely low p-value in the ANOVA table confirms this: there is very strong evidence
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against the null hypothesis of the five means being the same

H0 : µ1 = · · · = µ5. (8-33)

Model assumptions: the box plots do not indicate clear variance differences (al-
though it can be a bit difficult to know exactly how different such patterns should
be for it to be a problem. Statistical tests exist for such varicance comparisons, but
they are not included here). Let us check for the normality by doing a normal q-q
plot on the residuals:

qqnorm(fit$residuals)
qqline(fit$residuals)
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Or using the idea of comparing with repeated plots on the standardized residuals:

library(MESS)
qqwrap <- function(x, y, ...){

stdy <- (y-mean(y))/sd(y)
qqnorm(stdy, main="", ...)
qqline(stdy)}

wallyplot(fit$residuals, FUN=qqwrap, ylim=c(-3,3))
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There appears to be no important deviation from normality.

To complete the story about (quantifying) the five plastic types, we first compute the
five means:

tapply(D$strength, D$plastictype, mean)

1 2 3 4 5
47.9 56.1 52.8 50.9 44.3

And then we want to construct the M = 5 · 4/2 = 10 different confidence intervals
using Method 8.9. As all nis equal 6 in this case, all 10 confidence intervals will have
the same width, and we can use Remark 8.13 and compute the (half) width of the
confidence intervals, the LSD-value. And since there are 10 multiple comparisons
we will use αBonferroni = 0.05/10 = 0.005:
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LSD_0.005 <- qt(0.9975, 25) * sqrt(2*6.74/6)
LSD_0.005

[1] 4.614

So Plastictypes are significantly different from each other if they differ by more than
4.61. A convenient way to collect the information about the 10 comparisons is by
ordering the means from smallest to largest and then using the so-called compact
letter display:

Plastictype Mean
5 44.3 a
1 47.9 ab
4 50.9 bc
3 52.8 cd
2 56.1 d

Plastic types with a mean difference less than the LSD-value, hence not significantly
different share letters. Plastic types not sharing letters are significantly different. We
can hence read off all the 10 comparisons from this table.

One could also add the compact letter information to the box plot for a nice plotting -
it is allowed to be creative (while not changing the basic information and the results!)
in order to communicate the results.

8.3 Two-way ANOVA

8.3.1 Data structure and model

The one-way ANOVA is the natural multi-sample extension of the indepen-
dent two-sample situation covered in Section 3.2. The k samples are hence com-
pletely independent from each other, which e.g. in a clinical experiment would
mean that different patients get different treatments – and hence each patient
only tries a single treatment. Often this would be the only possible way to do a
comparison of treatments.

However, sometimes it will be possible to apply multiple treatments to the same
patient (with some time in between). This could then lead to a multi-treatment
setup, where the sample within each treatment consists of the same patients.
This is the natural extension of the paired-design setup covered in Section 3.2.3,
where we “pair” if there is exactly 2 treatments. With more than two treatments
we use the phrase “block”. A block would then be the patient in this case -
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and the same blocks then appear in all treatment samples. The “block” name
comes from the historical background of these methods coming from agricul-
tural field trials, where a block would be an actual piece of land within which
all treatments are applied.

Remark 8.18 Design: independent sampling or blocking?

For the project manager who is in charge of designing the study there will
be a choice to make in cases where both approaches are practicable feasi-
ble: should the independent samples approach or the blocked approach be
used? Should we use, say, 4 groups of 20 patients each, that is 80 patients all
together, or should we use the same 20 patients in each of the four groups?
The costs would probably be more or less the same. It sounds nice with 80
patients rather than 20? However, the answer is actually pretty clear if what-
ever we are going to measure will vary importantly from person to person.
And most things in medical studies do vary a lot from person to person due
to many things: gender, age, weight, BMI, or simply due to genetic differ-
ences that means that our bodies will respond differently to the medicine.
Then the blocked design would definitely be the better choice! This is so,
as we will see below, in the analysis of the blocked design the block-main-
variability is accounted for and will not “blur” the treatment difference sig-
nal. In the independent design the person-to-person variability may be the
main part of the “within group” variability used for the statistical analysis.
Or differently put: in a block design each patient would act as his/her own
control, the treatment comparison is carried out “within the block”.

For the actual study design it would in both cases be recommended to ran-
domize the allocation of patients as much as possible: In the independent
design patients should be allocated to treatments by randomization. In the
block design all patients receive all treatments but then one would random-
ize the order in which they receive the treatments. For this reason these two
types of experimental designs are usually called the Completely Randomized
Design and the Randomized Block Design.

We looked above in the one-way part at an example with 3 treatments with
4 observations for each. If the observations were on 4 different persons (and
not 12) it would make sense and would be important to include this person
variability in the model. The resulting model becomes

Yij = µ + αi + β j + εij, εij ∼ N(0, σ2), (8-34)

so there is an overall mean µ, a treatment effect αi and a block effect β j and our
usual random error term εij.
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The design is illustrated in the table below, so we have k treatments (A1, . . . ,Ak)
and l blocks (B1, . . . ,Bl):

B1 . . . Bl
A1 y11 . . . y1,l
...

... . . .
...

Ak yk,1 . . . yk,l

We can now find the parameters in the model above by

µ̂ = 1
k · l

k

∑
i=1

l

∑
j=1

yij, (8-35)

α̂i =
(

1
l

l

∑
j=1

yij

)
− µ̂, (8-36)

β̂ j =
(

1
k

k

∑
i=1

yij

)
− µ̂. (8-37)

Or expressed more compact, with the definitions of the terms obvious from the
above

µ̂ = ¯̄y, (8-38)
α̂i = ȳi· − ¯̄y, (8-39)

β̂ j = ȳ·j − ¯̄y. (8-40)

In a way, these means are the essential information in these data. All the rest we
do is just all the statistics to distinguish signal from noise. It does not change
the fact, that these means contain the core story. It also shows explicitly how we
now compute means, not only across one way in the data table, but also across
the other way. We compute means both row-wise and column-wise. Hence the
name: two-way ANOVA.

Example 8.19

Lets assume that the data we used in the previous section was actually a result of a
randomized block design and we could therefore write:

Group A Group B Group C
Block 1 2.8 5.5 5.8
Block 2 3.6 6.3 8.3
Block 3 3.4 6.1 6.9
Block 4 2.3 5.7 6.1
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In this case we should of course keep track of the blocks as well as the treatments:

y <- c(2.8, 3.6, 3.4, 2.3,
5.5, 6.3, 6.1, 5.7,
5.8, 8.3, 6.9, 6.1)

treatm <- factor(c(1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3))

block <- factor(c(1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4))

Now we can calculate the parameter estimates (µ̂ and α̂i, and β̂ j):

mu <- mean(y)
alpha <- tapply(y, treatm, mean) - mu
beta <- tapply(y, block, mean) - mu
mu

[1] 5.233

alpha

1 2 3
-2.2083 0.6667 1.5417

beta

1 2 3 4
-0.5333 0.8333 0.2333 -0.5333

so our estimates of the overall mean (µ) and αi remain the same while the estimated
block effects are β̂1 = −0.53, β̂2 = 0.83, β̂3 = 0.23 and β̂4 = −0.53.

8.3.2 Decomposition of variability and the ANOVA table

In the same way as we saw for the one-way ANOVA, there exists a decomposi-
tion of variation for the two-way ANOVA:
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Theorem 8.20 Variation decomposition

The total sum of squares (SST) can be decomposed into sum of squared
errors (SSE), treatment sum of squares (SS(Tr)), and a block sum of squares
(SS(Bl))

k

∑
i=1

l

∑
j=1

(yij − µ̂)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

l

∑
j=1

(yij − α̂i − β̂ j − µ̂)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

α̂2
i

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

β̂2
j

︸ ︷︷ ︸
SS(Bl)

=
k

∑
i=1

l

∑
j=1

(yij − ȳi· − ȳ·j + ¯̄y)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

(ȳi· − ¯̄y)2

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

(ȳ·j − ¯̄y)2

︸ ︷︷ ︸
SS(Bl)

,

(8-41)

Expressed in short form

SST = SS(Tr) + SS(Bl) + SSE. (8-42)

Note, how the SST and SS(Tr) are found exactly as in the one-way ANOVA.
If one ignores the block-way of the table, the two-way data has exactly the
same structure as one-way data (with the same number of observations in each
group). Further, note how SS(Bl) corresponds to finding a “one-way SS(Tr)”,
but on the other way of the table (and ignoring the treatment-way of the data
table). So from a computational point of view, finding these three, that is, find-
ing SST, SS(Tr) and SS(Bl) is done by known one-way methodology. And then
the last one, SSE, could then be found from the decomposition theorem as

SSE = SST− SS(Tr)− SS(Bl). (8-43)

Example 8.21

Returning to the example we get (SST and SS(Tr) remain unchanged):

SSBl <- 3 * sum(beta^2)
SSE <- SST - SSTr - SSBl
c(SST, SSE, SSTr, SSBl)

[1] 35.987 1.242 30.792 3.953
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Again, tests for treatment effects and block effects are done by comparing SS(Tr)
or SS(Bl) with SSE:

Theorem 8.22

Under the null hypothesis

H0,Tr : αi = 0, i = 1, 2, . . . , k, (8-44)

the test statistic

FTr = SS(Tr)/(k− 1)
SSE/((k− 1)(l − 1)) , (8-45)

follows an F-distribution with k− 1 and (k− 1)(l − 1) degrees of freedom.
Further, under the null hypothesis

H0,Bl : β j = 0, j = 1, 2, . . . , l, (8-46)

the test statistic

FBl = SS(Bl)/(l − 1)
SSE/((k− 1)(l − 1)) , (8-47)

follows an F-distribution with l − 1 and (k− 1)(l − 1) degrees of freedom.

Example 8.23

Returning to our example we get:

# Test statistics
Ftr <- SSTr / (3-1) / ( SSE / ((3-1) * (4-1)))
Fbl <- SSBl / (4-1) / ( SSE / ((3-1) * (4-1)))
# p-values
pv.tr <- 1 - pf(Ftr, df1=3-1, df2=(3-1)*(4-1))
pv.bl <- 1 - pf(Fbl, df1=4-1, df2=(3-1)*(4-1))
c(Ftr, Fbl)

[1] 74.396 6.368

c(pv.tr, pv.bl)

[1] 0.00005824 0.02704834
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or directly in R:

D <- data.frame(treatm, block, y)
fit <- lm(y ~ treatm + block, data=D)
anova(fit)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

treatm 2 30.79 15.40 74.40 0.000058 ***
block 3 3.95 1.32 6.37 0.027 *
Residuals 6 1.24 0.21
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Df Sum Sq Mean Sq F value Pr(>F)
treatm 2 30.79 15.40 74.40 0.0001
block 3 3.95 1.32 6.37 0.0270
Residuals 6 1.24 0.21

we see that the block effect is actually significant on a 5% confidence level, and also
that the p-value for the treatment effect is changed (the evidence against H0,Tr is
stronger) when we accounted for the block effect.

The test statistics and p-values are often collected in an analysis of variance table
as already shown above:

Source of Degrees of Sums of Mean sums of Test p-
variation freedom squares squares statistic F value
Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 FTr = MS(Tr)
MSE P(F > FTr)

Block l − 1 SS(Bl) MS(Bl) = SS(Bl)
l−1 FBl = MS(Bl)

MSE P(F > FBl)
Residual (l − 1)(k− 1) SSE MSE = SSE

(k−1)(l−1)
Total n− 1 SST
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8.3.3 Post hoc comparisons

The post hoc investigation is done following the same approach and principles
as for one-way ANOVA with the following differences:

1. Use the MSE and/or SSE from the two-way analysis instead of the MSE
and/or SSE from the one-way analysis

2. Use (l − 1)(k− 1) instead of n− k as degrees of freedom and as denomi-
nator for SSE

With these changes the Method boxes 8.9 and 8.10 and the Remark 8.13 can be
used for post hoc investigation of treatment differences in a two-way ANOVA.

Example 8.24

Returning to our small example we now find the pairwise treatment confidence in-
tervals within the two-way analysis. If the comparison of A and B was specifically
planned before the experiment was carried out, we would find the 95%-confidence
interval as:

muis[1] - muis[2] + c(-1,1) * qt(0.975, df=(4-1)*(3-1)) *
sqrt(SSE/((4-1)*(3-1)) * (1/4+1/4))

[1] -3.662 -2.088

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:

tobs <- (muis[1] - muis[2])/sqrt(SSE/6 * (1/4 + 1/4))
2 * (1 - pt(abs(tobs), df=6))

1
0.0001095

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =
0.017:
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alphaBonf <- 0.05/3
# A vs. B
alpha[1] - alpha[2] + c(-1, 1) *

qt(1-alphaBonf/2, df = 6) * sqrt(SSE/6 * (1/4 + 1/4))

[1] -3.932 -1.818

# A vs. C
alpha[1] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 6) * sqrt(SSE/6 * (1/4 + 1/4))

[1] -4.807 -2.693

# B vs. C
alpha[2] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 6) * sqrt(SSE/6 * (1/4 + 1/4))

[1] -1.9325 0.1825

and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that.

8.3.4 Model control

Also model control runs almost exactly the same way for two-way ANOVA as
for one-way:

• Use a q-q plot on residuals to check for the normality assumption

• Check variance homegenity by categorized box plots

The only difference is that the box plotting to investigate variance homogeneity
should be done on the residuals - NOT on the actual data. And that we can
investigate both potential treatment heterogeneity as block heterogeneity.

Example 8.25

First the residual normality plot:
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qqnorm(fit$residuals)
qqline(fit$residuals)
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Then the investigation of variance homogeneity:

par(mfrow=c(1,2))
plot(D$treatm, fit$residuals, xlab="Treatment", ylab="Residuals")
plot(D$block, fit$residuals, xlab="Block", ylab="Residuals")
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Actually, if we’ve had data with a higher number of observations for each block, we
might have had a problem here as blocks 2 and 3 appears to be quite different on
their variability, however since there are very few observations (3 in each block) it is
not unlikely to get this difference in variance when there is no difference (but again:
it is not very easy to know, exactly where the limit is between what is OK and what
is not OK in a situation like this. It is important information to present and take into
the evaluation of the results, and in the process of drawing conclusions).

8.3.5 A complete worked through example: Car tires

Example 8.26 Car tires

In a study of 3 different types of tires (“treatment”) effect on the fuel economy, drives
of 1000 km in 4 different cars ("blocks") were carried out. The results are listed in the
following table in km/l.

Car 1 Car 2 Car 3 Car 4 Mean
Tire 1 22.5 24.3 24.9 22.4 22.525
Tire 2 21.5 21.3 23.9 18.4 21.275
Tire 3 22.2 21.9 21.7 17.9 20.925
Mean 21.400 22.167 23.167 19.567 21.575

Let us analyse these data with a two-way ANOVA model, but first some explorative
plotting:

# Collecting the data in a data frame
D <- data.frame(

y=c(22.5, 24.3, 24.9, 22.4,
21.5, 21.3, 23.9, 18.4,
22.2, 21.9, 21.7, 17.9),

car=factor(c(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)),
tire=factor(c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3))

)

par(mfrow=c(1,2))
plot(D$tire, D$y, xlab="Tire", ylab="y")
plot(D$car, D$y, xlab="Car", ylab="y")
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Then the actual two-way ANOVA:

fit <- lm(y ~ car + tire, data=D)

anova(fit)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

car 3 25.18 8.39 7.03 0.022 *
tire 2 15.93 7.96 6.67 0.030 *
Residuals 6 7.17 1.19
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Df Sum Sq Mean Sq F value Pr(>F)
car 3 25.18 8.39 7.03 0.0217
tire 2 15.93 7.96 6.67 0.0299
Residuals 6 7.17 1.19

Conclusion: Tires (treatments) are significantly different and Cars (blocks) are sig-
nificantly different.

And the model control (for the conclusions to be validated). First the residual nor-
mality plot:

qqnorm(fit$residuals)
qqline(fit$residuals)
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Then the investigation of variance homogeneity:

par(mfrow=c(1,2))
plot(D$car, fit$residuals, xlab="Car", ylab="Residuals")
plot(D$tire, fit$residuals, xlab="Tire", ylab="Residuals")
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It seems like the variance for Car 2 and Car 3 is difference, however, as in the previ-
ous example, there are very few observations (only 3) for each car, hence this differ-
ence in variation is not unlikely if there is no difference. Thus we find that there do
not see any important deviations from the model assumptions.

Finally, the post hoc analysis, first the treatment means:

tapply(D$y, D$tire, mean)

1 2 3
23.52 21.27 20.92
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We can find the 0.05/3 (Bonferroni-corrected) LSD-value from the two-way version
of Remark 8.13:

LSD_bonf <- qt(1-0.05/6, df=6) * sqrt(2*1.19/4)
LSD_bonf

[1] 2.536

So tires are significantly different from each other if they differ by more than 2.54. A
convenient way to collect the information about the 3 comparisons is by ordering the
means from smallest to largest and then using the so-called compact letter display:

Tire Mean
3 20.925 a
2 21.275 a b
1 23.525 b

There is no significant difference between mean of Tire 2 and 3, and no significant
difference between mean of 2 and 1, but there is significant difference between mean
of 1 and 3.

8.4 Perspective

We have already seen how the R-version of the ANOVA, both one-way and
two-way, are carried out by the R-function lm. We also used lm for simple and
multiple linear regression (MLR) analysis in Chapters 5 and 6. “lm” stands for
“linear model”, and in fact from a mathematical perspective all these models
are what can be termed linear models, or sometimes general linear models. So
differently put, the ANOVA models can in fact be expressed as multiple linear
regression models, and the theory and matrix notation etc. from MLR can be
used to also work with ANOVA models.

This becomes convenient to understand if one moves on to situations, models
and statistical analysis going beyond the current course. An example of this
would be situations where we have as well factors as quantitative (continuous)
regression input in the same data set.

Important to know also is that the two basic ANOVA versions presented in this
material is just the start to be able to handle more general situations. An exam-
ple could be that, a two-way ANOVA could also occur in a different way than
shown here: if we perform what would be a completely randomized study,
that is, we have independent sampled groups, but with the groups being repre-
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sented by a two-way treatment factor structure, say, factor A with 5 levels and
factor B with 3 levels. Hence, we have all 15 groups consisting of all combina-
tions of the two treatments, but with several observations within each of the 15
groups. This would sometimes be called a two-way ANOVA with replications,
whereas the randomized block setting covered above then would be the two-
way ANOVA without replication (there is only and exactly one observation for
each combination of treatment and block).

And then the next step could be even more than two treatment factors, and
maybe such a multi-factorial setting could even be combined with blocking and
maybe some quantitative x-input (then often called covariates) calling for ex-
tensions of all this.

Another important extension direction are situations with different levels of ob-
servations/variability: there could be hierarchical structures in the data, e.g.
repeated measurement on an individual animal, but having also many animals
in the study, and animals might come from different farms, that lies in different
regions within different countries. This calls for so-called hierarchical models,
multi-level models, variance components models or models, where both treat-
ment factors and such hierarchical random effects are present – the so-called
mixed models.

All of this and many other good things can be learned in statistics courses build-
ing further on the methods presented in this material!
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8.5 Exercises

Exercise 8.1 Environment action plans

To investigate the effect of two recent national Danish aquatic environment ac-
tion plans the concentration of nitrogen (measured in g/m3) have been mea-
sured in a particular river just before the national action plans were enforced
(1998 and 2003) and in 2011. Each measurement is repeated 6 times during a
short stretch of river. The result is shown in the following table:

N1998 N2003 N2011
5.01 5.59 3.02
6.23 5.13 4.76
5.98 5.33 3.46
5.31 4.65 4.12
5.13 5.52 4.51
5.65 4.92 4.42

Row mean 5.5517 5.1900 4.0483

Further, the total variation in the data is SST = 11.4944. You got the following
output from R corresponding to a one-way analysis of variance (where most of
the information, however, is replaced by the letters A-E as well as U and V):

> anova(lm(N ~ Year))
Analysis of Variance Table

Response: N
Df SumSq MeanSq Fvalue Pr(>F)

Year A B C U V
Residuals D 4.1060 E

a) What numbers did the letters A-D substitute?

b) If you use the significance level α = 0.05, what critical value should be
used for the hypothesis test carried out in the analysis (and in the table
illustrated with the figures U and V)?
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c) Can you with these data demonstrate statistically significant (at signifi-
cance level α = 0.05) differences in N-mean values from year to year (both
conclusion and argument must be valid)?

d) Compute the 90% confidence interval for the single mean difference be-
tween year 2011 and year 1998.

Exercise 8.2 Environment action plans (part 2)

This exercise is using the same data as the previous exercise, but let us repeat
the description here. To investigate the effect of two recent national Danish
aquatic environment action plans the concentration of nitrogen (measured in
g/m3) have been measured in a particular river just before the national action
plans were enforced (1998 and 2003) and in 2011. Each measurement is repeated
6 times during a short stretch of river. The result is shown in the following table,
where we have now added also the variance computed within each group.

N1998 N2003 N2011
5.01 5.59 3.02
6.23 5.13 4.76
5.98 5.33 3.46
5.31 4.65 4.12
5.13 5.52 4.51
5.65 4.92 4.42

Row means 5.5517 5.1900 4.0483
Row variances 0.2365767 0.1313200 0.4532967

The data can be read into R and the means and variances computed by the
following in R:

nitrogen <- c(5.01, 5.59, 3.02,
6.23, 5.13, 4.76,
5.98, 5.33, 3.46,
5.31, 4.65, 4.12,
5.13, 5.52, 4.51,
5.65, 4.92, 4.42)

year <- factor(rep(c("1998", "2003", "2011"), 6))
tapply(nitrogen, year, mean)
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1998 2003 2011
5.552 5.190 4.048

tapply(nitrogen, year, var)

1998 2003 2011
0.2366 0.1313 0.4533

mean(nitrogen)

[1] 4.93

a) Compute the three sums of squares (SST, SS(Tr) and SSE) using the three
means and three variances, and the overall mean (show the formulas ex-
plicitly).

b) Find the SST-value in R using the sample variance function var.

c) Run the ANOVA in R and produce the ANOVA table in R.

d) Do a complete post hoc analysis, where all the 3 years are compared pair-
wise.

e) Use R to do model validation by residual analysis.
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Exercise 8.3 Plastic film

A company is starting a production of a new type of patch. For the product a
thin plastic film is to be used. Samples of products were received from 5 possible
suppliers. Each sample consisted of 20 measurements of the film thickness and
the following data were found:

Average film thickness Sample standard deviation
x̄ in µm s in µm

Supplier 1 31.4 1.9
Supplier 2 30.6 1.6
Supplier 3 30.5 2.2
Supplier 4 31.3 1.8
Supplier 5 29.2 2.2

From the usual calculations for a one-way analysis of variance the following is
obtained:

Source Degrees of freedom Sums of Squares
Supplier 4 SS(Tr) = 62
Error 95 SSE = 362.71

a) Is there a significant (α = 5%) difference between the mean film thick-
nesses for the suppliers (both conclusion and argument must be correct)?

b) Compute a 95% confidence interval for the difference in mean film thick-
nesses of Supplier 1 and Supplier 4 (considered as a “single pre-planned”
comparison).

Exercise 8.4 Brass alloys

When brass is used in a production, the modulus of elasticity, E, of the material
is often important for the functionality. The modulus of elasticity for 6 different
brass alloys are measured. 5 samples from each alloy are tested. The results are
shown in the table below where the measured modulus of elasticity is given in
GPa:
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Brass alloys
M1 M2 M3 M4 M5 M6
82.5 82.7 92.2 96.5 88.9 75.6
83.7 81.9 106.8 93.8 89.2 78.1
80.9 78.9 104.6 92.1 94.2 92.2
95.2 83.6 94.5 87.4 91.4 87.3
80.8 78.6 100.7 89.6 90.1 83.8

In an R-run for oneway analysis of variance:

anova( lm(elasmodul ~ alloy) )

the following output is obtained: (however some of the values have been sub-
stituted by the symbols A, B, and C)

> anova( lm(elasmodul ~ alloy) )
Analysis of Variance Table

Response: elasmodul
Df Sum Sq Mean Sq F value Pr(>F)
alloy A 1192.51 238.501 9.9446 3.007e-05
Residuals B C 23.983

a) What are the values of A, B, and C?

b) The assumptions for using the one-way analysis of variance is (choose the
answer that lists all the assumptions and that NOT lists any unnecessary
assumptions):

1 ) The data must be normally and independently distributed within
each group and the variances within each group should not differ
significantly from each other

2 ) The data must be normally and independently distributed within
each group

3 ) The data must be normally and independently distributed and have
approximately the same mean and variance within each group

4 ) The data should not bee too large or too small

5 ) The data must be normally and independently distributed within
each group and have approximately the same IQR-value in each group
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c) Compute a 95% confidence interval for the single pre-planned difference
between brass alloy 1 and 2.

Exercise 8.5 Plastic tubes

Some plastic tubes for which the tensile strength is essential are to be produced.
Hence, sample tube items are produced and tested, where the tensile strength
is determined. Two different granules and four possible suppliers are used in
the trial. The measurement results (in MPa) from the trial are listed in the table
below:

Granule
g1 g2

Supplier a 34.2 33.1
Supplier b 34.8 31.2
Supplier c 31.3 30.2
Supplier d 31.9 31.6

The following is run in R:

D <- data.frame(
strength=c(34.2,34.8,31.3,31.9,33.1,31.2,30.2,31.6),
supplier=factor(c("a","b","c","d","a","b","c","d")),
granule=factor(c(1,1,1,1,2,2,2,2))

)
anova(lm( strength ~ supplier + granule, data=D))

with the following result:
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Analysis of Variance Table

Response: strength
Df Sum Sq Mean Sq F value Pr(>F)

supplier 3 10.0338 3.3446 3.2537 0.1792
granule 1 4.6512 4.6512 4.5249 0.1233
Residuals 3 3.0837 1.0279

a) Which distribution has been used to find the p-value 0.1792?

b) What is the most correct conclusion based on the analysis among the fol-
lowing options (use α = 0.05)?

1 ) A significant difference has been found between the variances from
the analysis of variance

2 ) A significant difference has been found between the means for the 2
granules but not for the 4 suppliers

3 ) No significant difference has been found between the means for nei-
ther the 4 suppliers nor the 2 granules

4 ) A significant difference has been found between the means for as well
the 4 suppliers as the 2 granules

5 ) A significant difference has been found between the means for the 4
suppliers but not for the 2 granules

Exercise 8.6 Joining methods

To compare alternative joining methods and materials a series of experiments
are now performed where three different joining methods and four different
choices of materials are compared.

Data from the experiment are shown in the table below:

Material Row
Joining methods 1 2 3 4 average
A 242 214 254 248 239.50
B 248 214 248 247 239.25
C 236 211 245 243 233.75
Column average 242 213 249 246
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In an R-run for two-way analysis of variance:

Strength <- c(242,214,254,248,248,214,248,247,236,211,245,243)
Joiningmethod <- factor(c("A","A","A","A","B","B","B","B","C","C","C","C"))
Material <- factor(c(1,2,3,4,1,2,3,4,1,2,3,4))
anova(lm(Strength ~ Joiningmethod + Material))

the following output is generated (where some of the values are replaced by the
symbols A, B, C, D, E and F):

Analysis of Variance Table

Response: Strength
Df Sum Sq Mean Sq F value Pr(>F)

Joiningmethod A 84.5 B C 0.05041 .
Material D E 825.00 F 1.637e-05 ***
Residuals 6 49.5 8.25
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

a) What are the values for A, B and C?

b) What are the conclusions concerning the importance of the two factors in
the experiment (using the usual level α = 5%)?

c) Do post hoc analysis for as well the Materials as Joining methods (Confi-
dence intervals for pairwise differences and/or hypothesis tests for those
differences).

d) Do residual analysis to check for the assumptions of the model:

1. Normality

2. Variance homogeneity
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Exercise 8.7 Remoulade

A supermarket has just opened a delicacy department wanting to make its own
homemade “remoulade” (a Danish delicacy consisting of a certain mixture of
pickles and dressing). In order to find the best recipe a taste experiment was
conducted. 4 different kinds of dressing and 3 different types of pickles were
used in the test. Taste evaluation of the individual “remoulade” versions were
carried out on a continuous scale from 0 to 5.

The following measurement data were found:

Dressing type Row
Pickles type A B C D average
I 4.0 3.0 3.8 2.4 3.30
II 4.3 3.1 3.3 1.9 3.15
III 3.9 2.3 3.0 2.4 2.90
Column average 4.06 2.80 3.36 2.23

In an R-run for twoway ANOVA:

anova(lm(Taste ~ Pickles + Dressing))

the following output is obtained, where some of the values have been substi-
tuted by the symbols A, B, C, D, E and F):

anova(lm(Taste ~ Pickles + Dressing))
Analysis of Variance Table

Response: Taste
Df Sum Sq Mean Sq F value Pr(F)

Pickles A 0.3267 0.16333 E 0.287133
Dressing B 5.5367 1.84556 F 0.002273
Residuals C D 0.10556

a) What are the values of A, B, and C?

b) What are the values of D, E, and F?

c) With a test level of α = 5% the conclusion of the analysis, what is the
conclusion of the tests?
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Exercise 8.8 Transport times

In a study the transport delivery times for three transport firms are compared,
and the study also involves the size of the transported item. For delivery times
in days, the following data found:

The size of the item Row
Small Intermediate Large average

Firm A 1.4 2.5 2.1 2.00
Firm B 0.8 1.8 1.9 1.50
Firm C 1.6 2.0 2.4 2.00
Coulumn average 1.27 2.10 2.13

In R was run:

anova(lm(Time ~ Firm + Itemsize))

and the following output was obtained: (wherein some of the values, however,
has been replaced by the symbols A, B, C and D)

Analysis of Variance Table

Response: Time
Df Sum Sq Mean Sq F value Pr(>F)

Firm 2 A B 4.2857 0.10124
Itemsize 2 1.44667 C D 0.01929
Residuals 4 0.23333 0.05833

a) What is A, B, C and D?

b) What is the conclusion of the analysis (with a significance level of 5%)?
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Glossaries

Alternative hypothesis [Alternativ hypotese] The alternative hypothesis (H1)
is oftern the negation of the null hypothesis 152, 154, 155, 172, 187, 295,
321, 331

Binomial distribution [Binomial fordeling] If an experiment has two possible
outcomes (e.g. failure or success, no or yes, 0 or 1) and is repeated more
than one time, then the number of successes is binomial distributed 58, 60,
61, 317, 318, 331, 394

Block [Blok] The block name comes from the historical background of agricul-
tural field trials, where a block would be an actual piece of land within
which all treatments are applied 370, 371

Box plot [Box plot] The so-called boxplot in its basic form depicts the five quar-
tiles (min, Q1 , median, Q3 , max) with a box from Q1 to Q3 emphasizing
the Inter Quartile Range (IQR) 26, 29–32, 34, 36

Categorical data [Kategorisk data] A variable is called categorical if each ob-
servation belongs to one of a set of categories 1, 26

cumulated distribution function [Fordelingsfunktion]The cdf is the function
which determines the probability of observing an outcome of a random
variable below a given value 401

χ2-distribution [χ2-fordeling (udtales: chi-i-anden fordeling)] 97, 99, 140–142,
336

confidence interval [Konfidensinterval] The confidence interval is a way to han-
dle the uncertainty by the use of probability theory. The confidence inter-
val represents those values of the unknown population mean µ that we
believe is based on the data. Thus we believe the true mean in the statis-
tics class is in this interval 131

Class The frequency distribution of the data for a certain grouping of the data
26, 28
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Central Limit Theorem [Centrale grænseværdisætning] The Central Limit The-
orem (CLT) states that the sample mean of independent identically dis-
tributed outcomes converges to a normal distribution 135

Continuity correction The so-called Continuity correction is a general approach
to make the best approximation of discrete probabilities 320, 321

Continuous random variable [Kontinuert stokastisk variabel] If an outcome of
an experiment takes a continuous value, for example: a distance, a tem-
perature, a weight, etc., then it is represented by a continuous random
variable 44, 67, 69, 93, 401

Correlation [Korrelation] The sample correlation coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Covariance
16–20, 23, 88, 89, 235, 236, 275–277, 303, 305, 394, 400

Covariance [Kovarians] The sample covariance coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Correlation
16–20, 23, 88–90, 255, 256, 258–260, 266, 272, 273, 296, 297, 310, 394, 400,
402

Critical value Kritisk værdi As an alternative to the p-value one can use the so-
called critical values, that is the values of the test-statistic which matches
exactly the significance level 150–152, 154, 172, 177, 178, 264, 323, 329

Degrees of freedom [Frihedsgrader] The number of "observations" in the data
that are free to vary when estimating statistical parameters often defined
as n− 1 97, 99, 102, 108, 127, 128, 131, 139–142, 146, 150, 154, 170–172, 174,
176, 177, 185, 256, 263, 265, 267, 269, 292, 295, 298, 332, 333, 336, 337, 339,
342

Descriptive statistics [Beskrivende statistik] Descriptive statistics, or explorative
statistics, is an important part of statistics, where the data is summarized
and described 1, 4, 8

Discrete random variable [Diskret stokastisk variabel] A discrete random vari-
able has discrete outcomes and follows a discrete distribution 45, 52, 55,
91, 92

Distribution [Fordeling] Defines how the data is distributed such as, normal
distribution, cumulated distribution function, probability density func-
tion exponential distribution, log-normal distribution, Poisson distribu-
tion, uniform distribution, hypergeometric distribution, binomial distri-
bution, t-distribution, F-distribution 44
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Empirical cumulative distribution [Empirisk fordeling] The empirical cumu-
lative distribution function Fn is a step function with jumps i/n at obser-
vation values, where i is the number of identical observations at that value
28, 29, 159, 223

Expectation [Forventningsværdi] A function for calculating the mean. The value
we expect for a random variable (or function of random variables), hence
of the population 53, 108, 245, 248, 254, 255, 273

Exponential distribution [Eksponential fordelingen] The usual application of
the exponential distribution is for describing the length (usually time) be-
tween events which, when counted, follows a Poisson distribution 78, 79,
83, 211, 212, 214, 221, 394

F-distribution [F-fordelingen] The F-distribution appears as the ratio between
two independent χ2-distributed random variables 108, 394, 414

Frequency [Frekvens] How frequent data is observed. The frequency distribu-
tion of the data for a certain grouping is nicely depicted by the histogram,
which is a barplot of either raw frequencies or for some number of classes
26–28, 34, 37

Histogram [Histogram] The default histogram uses the same width for all classes
and depicts the raw frequencies/counts in each class. By dividing the raw
counts by n times the class width the density histogram is found where
the area of all bars sum to 1 26–28, 31, 48, 77, 123, 158, 159, 204, 213, 216,
217, 253

Hypergeometric distribution [Hypergeometrisk fordeling] 61, 62, 394

Independence [Uafhængighed] 88, 91–93, 135, 158, 259, 281, 339–342

Independent samples [Uafhængige stikprøver] 180, 181, 183

(Statistical) Inference [Statistisk inferens (følgeslutninger baseret på data)] 5,
96, 122, 133, 136, 246, 263, 278

Interval [Interval] Data in a specified range 63–65, 80, 82, 123

Inter Quartile Range [Interkvartil bredde] The Inter Quartile Range (IQR) is
the middle 50% range of data 15, 400

Least squares [Mindste kvadraters (metode)] 248, 249, 251

Linear regression [Lineær regression (-sanalyse)] 1, 20, 246, 251, 254, 263, 271,
272, 276, 291, 294, 296, 301, 304, 305, 310
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Log-normal distribution [Lognormal fordeling] 78, 394

Maximum likelihood [Estimator baseret på maximum likelihood metoden] 212,
215, 219

Median [Median, stikprøvemedian] The median of population or sample (note,
in text no distinguishment between population median and sample median)
8, 10, 11, 23, 166, 211, 214, 217, 399

Multiple linear regression [Multipel lineær regression (-sanalyse)] 1, 289, 292,
295, 296, 310

Non-parametric (test) [Ikke-parametriske (tests)] 204, 205, 211, 223, 226, 230,
231

Normal distribution [Normal fordeling] 67, 71, 74, 75, 78, 94, 97, 100, 102, 106,
107, 110, 123–128, 130, 133, 134, 136, 138, 140, 158–166, 185, 188, 203–205,
211, 212, 218, 221, 261, 394

Null hypothesis [Nulhypotese (H0)] 143–146, 147, 148–152, 154, 155, 157, 169,
171–174, 176–178, 263, 265, 292, 295, 301, 321–323, 328–333, 339

One-sample t-test Missing description 150, 153, 154, 187

One-sided (test) [Énsidet test] Is also called directional (test) 187, 322

P-value [p-værdi (for faktisk udfald af en teststørrelse)] 100, 133, 143–148, 150,
153, 157, 169, 176, 179, 183, 264, 265, 294, 295, 304, 324, 330, 333, 334, 339,
340, 342, 361, 374, 376, 394

probability density function The pdf is the function which determines the prob-
ability of every possible outcome of a random variable 401

Poisson distribution [Poisson fordeling] 394, 395

Quantile [Fraktil, stikprøvefraktil] The quantiles of population or sample (note,
in text no distinguishment between population quantile and sample quantile)
11, 399

Quartile [Fraktil, stikprøvefraktil] The quartiles of population or sample (note,
in text no distinguishment between population quartile and sample quartile)
12, 399

Sample variance [Empirisk varians, stikprøvevarians] 13, 400



Chapter 8 Glossaries 397

Sample mean [Stikprøvegennemsnit] The average of a sample 9, 10, 14, 23, 51–
54, 56, 88, 102, 104–106, 122–127, 129, 130, 132, 135, 136, 140, 143, 168, 186,
399

Significance level A number α (often 0.05) which is used to quantify precision
or uncertainty 394

Standard deviation [Standard afvigelse] 400

Standard normal distribution [Standardiseret normalfordeling ( N(0, 1))] 324

t-distribution [t-fordeling] 102, 394

Two-sided (test) [Tosidet test (test med tosidet alternativ)] Is also called non-
directional (test) 177, 264, 321, 328

Uniform distribution [Uniform (rektangulær) fordeling] 394
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Acronyms

ANOVA Analysis of Variance 173, 180, 348, 351, 356, 358, 362, 363, 365, 368,
370–372, 375, 376, 378, 381, Glossary: Analysis of Variance

cdf cumulated distribution function 46, 394, 401, Glossary: cumulated distribu-
tion function

CI confidence interval 123, 124, 130–133, 137–139, 142, 148, 151, 152, 157, 165,
166, 168–170, 177–180, 183, 185, 186, 211, 212, 214, 215, 217, 219, 222, 223,
226, 230, 231, 233, 235, 238, 255, 263, 265–267, 269, 276, 292, 295, 296, 298,
301, 311, 318–321, 327, 358, 360, 361, 367, 375, 408–410, 413, Glossary: con-
fidence interval

CLT Central Limit Theorem 135–137, 214, Glossary: Central Limit Theorem

IQR Inter Quartile Range 8, 15, 16, 29, 30, 214, 393, 400, Glossary: Inter Quartile
Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function 394, 401, Glossary: probability density function
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Appendix A

Collection of formulas and R commands

This appendix chapter holds a collection of formulas. All the relevant equations from def-
initions, methods and theorems are included – along with associated R functions. All are
in included in the same order as in the book, except for the distributions which are listed
together.

A.1 Introduction, descriptive statistics, R and data
visualization

Description Formula R command

1.4
Sample mean
The mean of a sample. x̄ = 1

n

n

∑
i=1

xi mean(x)

1.5

Sample median
The value that divides a sam-
ple in two halves with equal
number of observations in
each.

Q2 =





x( n+1
2 ) for odd n

x( n
2 )+x( n+2

2 )
2 for even n

median(x)

1.7

Sample quantile
The value that divide a sam-
ple such that p of the obser-
vations are less that the value.
The 0.5 quantile is the Me-
dian.

qp =
{ x(np)+x(np+1)

2 for pn integer

x(dnpe) for pn non-integer

quantile(x,p,type=2),

1.8

Sample quartiles
The quartiles are the five
quantiles dividing the sample
in four parts, such that each
part holds an equal number of
observations

Q0 = q0 = “minimum”

Q1 = q0.25 = “lower quartile”

Q2 = q0.5 = “median”

Q3 = q0.75 = “upper quartile”

Q4 = q1 = “maximum”

quantile(x,
probs,type=2)

where
probs=p
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Description Formula R command

1.10

Sample variance
The sum of squared differ-
ences from the mean divided
by n− 1.

s2 = 1
n− 1

n

∑
i=1

(xi − x̄)2 var(x)

1.11
Sample standard deviation
The square root of the sample
variance.

s =
√

s2 =
√

1
n− 1

n

∑
i=1

(xi − x̄)2 sd(x)

1.12

Sample coefficient of vari-
ance
The sample standard devia-
tion seen relative to the sam-
ple mean.

V = s
x̄

sd(x)/mean(x)

1.15
Sample Inter Quartile Range
IQR: The middle 50% range of
data

IQR = Q3 −Q1 IQR(x, type=2)

1.18
Sample covariance
Measure of linear strength of
relation between two samples

sxy = 1
n−1 ∑n

i=1 (xi − x̄) (yi − ȳ) cov(x,y)

1.19

Sample correlation
Measure of the linear strength
of relation between two sam-
ples between -1 and 1.

r = 1
n−1 ∑n

i=1

(
xi−x̄

sx

) (
yi−ȳ

sy

)
= sxy

sx ·sy
cor(x,y)
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A.2 Probability and Simulation

Description Formula R command

2.6

Probability density function
(pdf) for a discrete variable
fulfills two conditions: f (x) ≥
0 and ∑all x f (x) = 1 and finds
the probality for one x value.

f (x) = P(X = x) dnorm,dbinom,dhyper,
dpois

2.9

Cumulated distribution
function (cdf)
gives the probability in a
range of x values where
P(a < X ≤ b) = F(b)− F(a).

F(x) = P(X ≤ x) pnorm,pbinom,phyper,
ppois

2.13
Mean of a discrete random
variable µ = E(X) = ∑∞

i=1 xi f (xi)

2.16
Variance of a discrete ran-
dom variable X σ2 = Var(X) = E[(X− µ)2]

2.32

Pdf of a continuous random
variable
is a non-negative function for
all possible outcomes and has
an area below the function of
one

P(a < X ≤ b) =
∫ b

a f (x)dx

2.33

Cdf of a continuous random
variable
is non-decreasing
and limx→−∞ F(x) =
0 and limx→∞ F(x) = 1

F(x) = P(X ≤ x) =
∫ x
−∞ f (u)du

2.34
Mean and variance for a con-
tinuous random variable X

µ = E(X) =
∫ ∞
−∞ x f (x)dx

σ2 = E[(X− µ)2] =
∫ ∞
−∞(x− µ)2 f (x)dx

2.54

Mean and variance of a linear
function
The mean and variance of a
linear function of a random
variable X.

E(aX + b) = a E(X) + b

V(aX + b) = a2 V(X)

2.56

Mean and variance of a linear
combination
The mean and variance of a
linear combination of random
variables.

E(a1X1 + a2X2 + · · ·+ anXn) =
a1 E(X1) + a2 E(X2) + · · ·+ an E(Xn)

V(a1X1 + a2X2 + . . . + anXn) =
a2

1 V(X1) + a2
2 V(X2) + · · ·+ a2

n V(Xn)
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Description Formula R command

2.58

Covariance
The covariance between be
two random variables X and
Y.

Cov(X, Y) = E [(X− E[X])(Y− E[Y])]
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A.2.1 Distributions

Here all the included distributions are listed including some important theorems and definitions
related specifically with a distribution.

Description Formula R command

2.20

Binominal distribution
n is the number of indepen-
dent draws and p is the prob-
ability of a success in each
draw. The Binominal pdf de-
scribes the probability of x
succeses.

f (x; n, p) = P(X = x)

=
(

n
x

)
px(1− p)n−x

where
(

n
x

)
= n!

x!(n− x)!

dbinom(x, size, prob)
pbinom(q, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)
where
size=n, prob=p

2.21
Mean and variance of a bino-
mial distributed random vari-
able.

µ = np

σ2 = np(1− p)

2.24

Hypergeometric distribution
n is the number of draws
without replacement, a is
number of succeses and N is
the population size.

f (x; n, a, N) = P(X = x)

=
(a

x)(
N−a
n−x)

(N
n )

where
(

a
b

)
= a!

b!(a− b)!

dhyper(x,m,n,k)
phyper(q,m,n,k)
qhyper(p,m,n,k)
rhyper(nn,m,n,k)
where
m=a, n=N − a, k=n

2.25

Mean and variance of a hyper-
geometric distributed random
variable.

µ = n
a
N

σ2 = n
a(N − a)

N2
N − n
N − 1

2.27

Poisson distribution
λ is the rate (or intensity) i.e.
the average number of events
per interval. The Poisson pdf
describes the probability of x
events in an interval.

f (x; λ) = λx

x!
e−λ

dpois(x,lambda)
ppois(q,lambda)
qpois(p,lambda)
rpois(n,lambda)
where
lambda=λ

2.28
Mean and variance of a Pois-
son distributed random vari-
able.

µ = λ

σ2 = λ

2.35

Uniform distribution
α and β defines the range of
possible outcomes. random
variable following the uni-
form distribution has equal
density at any value within a
defined range.

f (x; α, β) =





0 for x < α
1

β−α for x ∈ [α, β]
0 for x > β

F(x; α, β) =





0 for x < α
x−α
β−α for x ∈ [α, β]
0 for x > β

dunif(x,min,max)
punif(q,min,max)
qunif(p,min,max)
runif(n,min,max)
where
min=α, max=β
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Description Formula R command

2.36

Mean and variance of a uni-
form distributed random vari-
able X.

µ = 1
2

(α + β)

σ2 = 1
12

(β− α)2

2.37
Normal distribution
Often also called the Gaussian
distribution.

f (x; µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2

dnorm(x,mean,sd)
pnorm(q,mean,sd)
qnorm(p,mean,sd)
rnorm(n,mean,sd)
where
mean=µ, sd=σ.

2.38
Mean and variance of a nor-
mal distributed random vari-
able.

µ

σ2

2.43

Transformation of a normal
distributed random variable
X into a standardized normal
random variable.

Z = X− µ

σ

2.46

Log-normal distribution
α is the mean and β2 is the
variance of the normal distri-
bution obtained when taking
the natural logarithm to X.

f (x) = 1
x
√

2πβ
e
− (ln x−α)2

2β2

dlnorm(x,meanlog,sdlog)
plnorm(q,meanlog,sdlog)
qlnorm(p,meanlog,sdlog)
rlnorm(n,meanlog,sdlog)
where
meanlog=α, sdlog=β.

2.47

Mean and variance of a log-
normal distributed random
variable.

µ = eα+β2/2

σ2 = e2α+β2(eβ2 − 1)

2.48
Exponential distribution
λ is the mean rate of events. f (x; λ) =

{
λe−λx for x ≥ 0

0 for x < 0

dexp(x,rate)
pexp(q,rate)
qexp(p,rate)
rexp(n,rate)
where
rate=λ.

2.49

Mean and variance of a ex-
ponential distributed random
variable.

µ = 1
λ

σ2 = 1
λ2

2.78
χ2-distribution
Γ
(

ν
2

)
is the Γ-function and ν is

the degrees of freedom.
f (x) = 1

2
ν
2 Γ
(

ν
2

) x
ν
2−1e−

x
2 ; x ≥ 0

dchisq(x,df)
pchisq(q,df)
qchisq(p,df)
rchisq(n,df)
where
df=ν.
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Description Formula R command

2.81

Given a sample of size n from
the normal distributed ran-
dom variables Xi with vari-
ance σ2, then the sample vari-
ance S2 (viewed as random
variable) can be transformed
to follow the χ2 distribution
with the degrees of freedom
ν = n− 1.

χ2 = (n− 1)S2

σ2

2.83
Mean and variance of a χ2 dis-
tributed random variable.

E(X) = ν

V(X) = 2ν

2.86

t-distribution
ν is the degrees of freedom
and Γ() is the Gamma func-
tion.

fT(t) = Γ( ν+1
2 )√

νπ Γ( ν
2 )
(

1 + t2

ν

)− ν+1
2

2.87

Relation between normal
random variables and χ2-
distributed random variables.
Z ∼ N(0, 1) and Y ∼ χ2(ν).

X = Z√
Y/ν

∼ t(ν)

dt(x,df)
pt(q,df)
qt(p,df)
rt(n,df)
where
df=ν.

2.89

For normal distributed ran-
dom variables X1, . . . , Xn, the
random variable follows the
t-distribution, where X is the
sample mean, µ is the mean of
X, n is the sample size and S
is the sample standard devia-
tion.

T = X− µ

S/
√

n
∼ t(n− 1)

2.93
Mean and variance of a t-
distributed variable X.

µ = 0; ν > 1

σ2 = ν

ν− 2
; ν > 2

2.95

F-distribution
ν1 an ν2 are the degrees of
freedom and B(·, ·) is the Beta
function.

fF(x) = 1
B
( ν1

2 , ν2
2

)
(

ν1

ν2

) ν1
2

· x
ν1
2 −1

(
1 + ν1

ν2
x
)− ν1+ν2

2

df(x,df1,df2)
pf(q,df1,df2)
qf(p,df1,df2)
rf(n,df1,df2)
where
df1=ν1,df2=µ2.

2.96

The F-distribution appears as
the ratio between two inde-
pendent χ2-distributed ran-
dom variables with U ∼
χ2(ν1) and V ∼ χ2(ν2).

U/ν1

V/ν2
∼ F(ν1, ν2)
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Description Formula R command

2.98

X1, . . . , Xn1 and Y1, . . . , Yn2

with the mean µ1 and µ2

and the variance σ2
1 and σ2

2
is independent and sampled
from a normal distribution.

S2
1/σ2

1

S2
2/σ2

2
∼ F(n1 − 1, n2 − 1)

2.101

Mean and variance of a F-
distributed variable X.

µ = ν2

ν2 − 2
; ν2 > 2

σ = 2ν2
2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4) ; ν2 > 4
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A.3 Statistics for one and two samples

Description Formula R command

3.3
The distribution of the mean
of normal random variables. X̄ = 1

n

n

∑
i=1

Xi ∼ N
(

µ,
σ2

n

)

3.5
The distribution of the σ-
standardized mean of normal
random variables

Z = X̄− µ

σ/
√

n
∼ N

(
0, 12)

3.5
The distribution of the S-
standardized mean of normal
random variables

T = X̄− µ

S/
√

n
∼ t(n− 1)

3.7
Standard Error of the mean SEx̄ = s√

n

3.9
The one sample confidence in-
terval for µ

x̄± t1−α/2 ·
s√
n

3.14 Central Limit Theorem (CLT) Z = X̄− µ

σ/
√

n

3.19
Confidence interval for the
variance and standard devia-
tion

σ2 :

[
(n− 1)s2

χ2
1−α/2

;
(n− 1)s2

χ2
α/2

]

σ :

[√
(n− 1)s2

χ2
1−α/2

;

√
(n− 1)s2

χ2
α/2

]

3.22 The p-value

The p-value is the probability of obtain-
ing a test statistic that is at least as ex-
treme as the test statistic that was actu-
ally observed. This probability is calcu-
lated under the assumption that the null
hypothesis is true.

P(T>x)=2(1-pt(x,n-1))

3.23
The one-sample t-test statistic
and p-value

p-value = 2 · P(T > |tobs|)

tobs = x̄− µ0

s/
√

n
H0 : µ = µ0

3.24 The hypothesis test
Rejected: p-value < α

Accepted: otherwise

3.29 Significant effect An effect is significant if the p-value< α

3.31

The critical values: α/2- and
1 − α/2-quantiles of the t-
distribution with n − 1 de-
grees of freedom

tα/2 and t1−α/2

3.32
The one-sample hypothesis
test by the critical value

Reject: |tobs| > t1−α/2
accept: otherwise
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Description Formula R command

3.33 Confidence interval for µ
x̄± t1−α/2 · s√

n
acceptance region/CI: H0 : µ = µ0

3.36 The level α one-sample t-test

Test: H0 : µ = µ0 and H1 : µ 6= µ0 by
p-value = 2 · P(T > |tobs|)
Reject: p-value < α or |tobs| > t1−α/2
Accept: Otherwise

3.63
The one-sample confidence
interval (CI) sample size for-
mula

n =
( z1−α/2·σ

ME

)2

3.65
The one-sample sample size
formula

n =
(

σ
z1−β+z1−α/2

(µ0−µ1)

)2

3.42
The Normal q-q plot with
n > 10

naive approach: pi = i
n , i = 1, . . . , n

commonly aproach: pi = i−0.5
n+1 , i =

1, . . . , n

3.49
The (Welch) two-sample t-test
statistic

δ = µ2 − µ1

H0 : δ = δ0

tobs = (x̄1−x̄2)−δ0√
s2

1/n1+s2
2/n2

3.50
The distribution of the
(Welch) two-sample statistic

T = (X̄1−X̄2)−δ0√
S2

1/n1+S2
2/n2

ν =

(
s2
1

n1
+ s2

2
n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

3.51 The level α two-sample t-test

Test: H0 : µ1 − µ2 = δ0 and H1 : µ1 −
µ2 6= δ0 by p-value = 2 · P(T > |tobs|)
Reject: p-value < α or |tobs| > t1−α/2
Accept: Otherwise

3.52
The pooled two-sample esti-
mate of variance

s2
p = (n1−1)s2

1+(n2−1)s2
2

n1+n2−2

3.53
The pooled two-sample t-test
statistic

δ = µ1 − µ2

H0 : δ = δ0

tobs = (x̄1−x̄2)−δ0√
s2

p/n1+s2
p/n2

3.54
The distribution of the pooled
two-sample t-test statistic

T = (X̄1−X̄2)−δ0√
S2

p/n1+S2
p/n2

3.47
The two-sample confidence
interval for µ1 − µ2

x̄− ȳ± t1−α/2 ·
√

s2
1

n1
+ s2

2
n2

ν =

(
s2
1

n1
+ s2

2
n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1
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A.4 Simulation based statistics

Description Formula R command

4.3
The non-linear approximative
error propagation rule

σ2
f (X1,...,Xn) = ∑n

i=1

(
∂ f
∂xi

)2
σ2

i

4.4
Non-linear error propagation
by simulation

1. Simulate k outcomes
2. Calculate the standard deviation by

ssim
f (X1,...,Xn) =

√
1

k−1 ∑k
i=1( f j − f̄ )2

4.7
Confidence interval for any
feature θ by parametric boot-
strap

1.Simulate k samples
2.Calculate the statistic θ̂

3.Calculate CI:
[
q∗100(α/2)%, q∗100(1−α/2)%

]

4.10

Two-sample confidence in-
terval for any feature com-
parison θ1 − θ2 by parametric
bootstrap

1.Simulate k sets of 2 samples
2.Calculate the statistic θ̂∗xk − θ̂∗yk

3.Calculate CI:
[
q∗100(α/2)%, q∗100(1−α/2)%

]
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A.5 Simple linear regression

Description Formula R command

5.4 Least square estimators

β̂1 = ∑n
i=1(Yi − Ȳ)(xi − x̄)

Sxx

β̂0 = Ȳ− β̂1 x̄

where Sxx = ∑n
i=1(xi − x̄)2

5.8 Variance of estimators

V[β̂0] = σ2

n
+ x̄2σ2

Sxx

V[β̂1] = σ2

Sxx

Cov[β̂0, β̂1] = − x̄σ2

Sxx

5.12
Tests statistics for H0 : β0 = 0
and H0 : β1 = 0

Tβ0 = β̂0 − β0,0

σ̂β0

Tβ1 = β̂1 − β0,1

σ̂β1

5.14 Level α t-tests for parameter

Test H0,i : βi = β0,i vs. H1,i : βi 6= β0,i
with p-value = 2 · P(T > |tobs,βi |)
where tobs,βi = β̂i−β0,i

σ̂βi
.

If p-value < α then reject H0,
otherwise accept H0

D <- data.frame(
x=c(), y=c())

fit <- lm(y~x, data=D)
summary(fit)

5.15
Parameter confidence inter-
vals

β̂0 ± t1−α/2 σ̂β0

β̂1 ± t1−α/2 σ̂β1

confint(fit,level=0.95)

5.18
Confident and prediction in-
terval

Confidence interval for the line:

β̂0 + β̂1xnew ± t1−α/2σ̂
√

1
n + (xnew−x̄)2

Sxx

Interval for a new point prediction:

β̂0 + β̂1xnew ± t1−α/2σ̂
√

1 + 1
n + (xnew−x̄)2

Sxx

predict(fit,
newdata=data.frame(),
interval="confidence",
level=0.95)

predict(fit,
newdata=data.frame(),
interval="prediction",
level=0.95)

5.23

The matrix formulation of
the parameter estimators in
the simple linear regression
model

β̂ = (XTX)−1XTY

V[β̂] = σ2(XTX)−1

σ̂2 = RSS
n− 2

5.25

Coefficient of determination
R2

r2 = 1− ∑i(yi−ŷi)2

∑i(yi−ȳ)2
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Description Formula R command

5.7
Model validation of assump-
tions

> Check the normality assumption with
a q-q plot of the residuals.

> Check the systematic behavior by
plotting the residuals ei as a function of
fitted values ŷi

qqnorm(fit$residuals)
qqline(fit$residuals)

plot(fit$fitted.values,
fit$residuals)
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A.6 Multiple linear regression

Description Formula R command

6.2 Level α t-tests for parameter

Test H0,i : βi = β0,i vs. H1,i : βi 6= β0,i
with p-value = 2 · P(T > |tobs,βi |)
where tobs,βi = β̂i−β0,i

σ̂βi
.

If p-value < α the reject H0,
otherwise accept H0

D<-data.frame(x1=c(),
x2=c(),y=c())

fit <- lm(y~x1+x2,
data=D)

summary(fit)

6.5
Parameter confidence inter-
vals

β̂i ± t1−α/2 σ̂βi confint(fit,level=0.95)

6.9
Confident and prediction in-
terval (in R)

Confident interval for the line
β̂0 + β̂1x1,new + · · ·+ β̂pxp,new

Interval for a new point prediction
β̂0 + β̂1x1,new + · · ·+ β̂pxp,new + εnew

predict(fit,
newdata=data.frame(),
interval="confidence",
level=0.95)

predict(fit,
newdata=data.frame(),
interval="prediction",
level=0.95)

6.17

The matrix formulation of
the parameter estimators in
the multiple linear regression
model

β̂ = (XTX)−1XTY

V[β̂] = σ2(XTX)−1

σ̂2 = RSS
n− (p + 1)

6.16 Model selection procedure
Backward selection: start with full
model and stepwise remove insignifi-
cant terms
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A.7 Inference for proportions

Description Formula R command

7.3
Proportion estimate and con-
fidence interval

p̂ = x
n

p̂± z1−α/2

√
p̂(1− p̂)

n

prop.test(x=, n=,
correct=FALSE)

7.10
Approximate proportion with
Z

Z = X−np0√
np0(1−p0)

∼ N(0, 1)

7.11
The level α one-sample pro-
portion hypothesis test

Test: H0 : p = p0, vs. H1 : p 6= p0

by p-value = 2 · P(Z > |zobs|)
where Z ∼ N(0, 12)
If p-value < α the reject H0,
otherwise accept H0

prop.test(x=, n=,
correct=FALSE)

7.13
Sample size formula for the CI
of a proportion

Guessed p (with prior knowledge):
n = p(1− p)( z1−α/2

ME )2

Unknown p:
n = 1

4 ( z1−α/2
ME )2

7.15

Difference of two proportions
estimator p̂1 − p̂2 and confi-
dence interval for the differ-
ence

σ̂p̂1− p̂2 =
√

p̂1(1− p̂1)
n1

+ p̂2(1− p̂2)
n2

( p̂1 − p̂2)± z1−α/2 · σ̂p̂1− p̂2

7.18 The level α one-sample t-test

Test: H0 : p1 = p2, vs. H1 : p1 6= p2

by p-value = 2 · P(Z > |zobs|)
where Z ∼ N(0, 12)
If p-value < α the reject H0,
otherwise accept H0

prop.test(x=, n=,
correct=FALSE)

7.20
The multi-sample proportions
χ2-test

Test: H0 : p1 = p2 = . . . = pc = p

by χ2
obs = ∑2

i=1 ∑c
j=1

(oij−eij)2

eij

chisq.test(X,
correct = FALSE)

7.22
The r × c frequency table χ2-
test

Test: H0 : pi1 = pi2 = . . . = pic = pi
for all rows i = 1, 2, . . . , r
by χ2

obs = ∑r
i=1 ∑c

j=1
(oij−eij)2

eij

Reject if χ2
obs > χ2

1−α

(
(r− 1)(c− 1)

)

Otherwise accept

chisq.test(X,
correct = FALSE)
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A.8 Comparing means of multiple groups - ANOVA

Description Formula R command

8.2
One-way ANOVA variation
decomposition

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)2

︸ ︷︷ ︸
SSE

+

k

∑
i=1

ni(ȳi − ȳ)2

︸ ︷︷ ︸
SS(Tr)

8.4
One-way within group vari-
ability

MSE = SSE
n−k = (n1−1)s2

1+···+(nk−1)s2
k

n−k

s2
i = 1

ni−1 ∑ni
i=1(yij − ȳi)2

8.6
One-way test for difference in
mean for k groups

H0 : αi = 0; i = 1, 2, . . . , k,

F = SS(Tr)/(k−1)
SSE/(n−k)

F-distribution with k − 1 and n − k de-
grees of freedom

anova(lm(y~treatm))

8.9
Post hoc pairwise confidence
intervals

ȳi − ȳj ± t1−α/2

√
SSE
n−k

(
1
ni

+ 1
nj

)

If all M = k(k − 1)/2 combinations,
then use αBonferroni = α/M

8.10
Post hoc pairwise hypothesis
tests

Test: H0 : µi = µj vs. H1 : µi 6= µj
by p-value = 2 · P(T > |tobs|)
where tobs = ȳi−ȳj√

MSE
(

1
ni

+ 1
nj

)

Test M = k(k − 1)/2 times, but each
time with αBonferroni = α/M

8.13
Least Significant Difference
(LSD) values

LSDα = t1−α/2
√

2 ·MSE/m

8.20
Two-way ANOVA variation
decomposition

k

∑
i=1

l

∑
j=1

(yij − µ̂)2

︸ ︷︷ ︸
SST

=

k

∑
i=1

l

∑
j=1

(yij − α̂i − β̂ j − µ̂)2

︸ ︷︷ ︸
SSE

+

l ·
k

∑
i=1

α̂2
i

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

β̂2
j

︸ ︷︷ ︸
SS(Bl)
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Description Formula R command

8.22
Test for difference in means in
two-way ANOVA grouped in
treatments and in blocks

H0,Tr : αi = 0, i = 1, 2, . . . , k

FTr = SS(Tr)/(k− 1)
SSE/((k− 1)(l − 1))

H0,Bl : β j = 0, j = 1, 2, . . . , l

FBl = SS(Bl)/(l − 1)
SSE/((k− 1)(l − 1))

fit<-lm(y~treatm+block)
anova(fit)

One-way ANOVA

Source of Degrees of Sums of Mean sum of Test- p-

variation freedom squares squares statistic F value

Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)
k−1 Fobs = MS(Tr)

MSE P(F > Fobs)

Residual n− k SSE MSE = SSE
n−k

Total n− 1 SST

Two-way ANOVA

Source of Degrees of Sums of Mean sums of Test p-

variation freedom squares squares statistic F value

Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)
k−1 FTr = MS(Tr)

MSE P(F > FTr)

Block l − 1 SS(Bl) MS(Bl) = SS(Bl)
l−1 FBl = MS(Bl)

MSE P(F > FBl)

Residual (l − 1)(k− 1) SSE MSE = SSE
(k−1)(l−1)

Total n− 1 SST
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