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8.1 Introduction

In Chapter 3 the test of difference in mean of two groups was introduced

H0 : µ1 − µ2 = δ0. (8-1)

Often we are interested in testing if the mean of the two groups are different
(H0 : µ1 = µ2), against the alternative (µ1 ̸= µ2). Often we will face a situ-
ation where we have data in multiple (more than two) groups leading to the
natural extension of the two-sample situation to a multi-sample situation. The
hypothesis of k groups having the same means can then be expressed as

H0 : µ1 = µ2 = · · · = µk. (8-2)

Or in words we have k groups (often referred to as treatments) and we want to
test if they all have the same mean against the alternative that at least one group
is different from the other groups. Note, that the hypothesis is not expressing
any particular values for the means, but just that they are all the same.

The purpose of the data analysis in such a multi-group situation can be ex-
pressed as a two-fold purpose:

1. Answer the question: are the group means (significantly) different (hy-
pothesis test)?

2. Tell the story about (or “quantify”) the groups and their potential differ-
ences (estimates and confidence intervals)

The statistical analysis used for such an analysis is called one-way Analysis
of Variance (ANOVA). Though there is an initial contradiction in the name, as
ANOVA is used to compare the means of populations and not their variances,
the name should not be met with confusion. An ANOVA expresses how dif-
ferent the means of k populations are by measuring how much of the variance
in data is explained by grouping the observations (in other words: the variance
explained by fitting a model with a mean for each population). If enough of the
variation is explained, then a significant difference in population means can be
concluded.

The one-way ANOVA is the natural multi-sample extension of the indepen-
dent two-sample setup covered in Chapter 3. We will also present a natural
multi-sample extension of the two paired-sample situation from Chapter 3. This
generalization, where the k samples are somehow dependent, e.g. if the same
individuals are used in each of the groups, is called two-way ANOVA.
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8.2 One-way ANOVA

8.2.1 Data structure and model

As mentioned above we assume that we have data from k groups, also assume
ni repetitions in group (i), this imply that we can order data in a table like:

Tr1 y11 . . . y1,n1
...

... . . .
Trk yk,1 . . . yk,nk

The total number of observations is n = ∑k
i=1 ni, note that there does not have

to be the same number of observations within each group (treatment).

As for the two-sample case in Chapter 3 there are some standard assumptions
that are usually made in order for the methods to come to be 100% valid. In
the case of one-way ANOVA, these assumptions are expressed by formulating
a “model” much like how regression models in Chapters 5 and 6 are expressed

Yij = µi + εij, εij ∼ N(0, σ2). (8-3)

The model is expressing that the observations come from a normal distribution
within each group, that each group (i) has a specific mean, and that the variance
is the same (σ2) for all groups. Further, we see explicitly that we have a number
of observations (ni) within each group (j = 1, . . . , ni).

As noted above the relevant hypothesis to fulfil the first purpose of the analysis
is that of equal group means (8-2). It turns out that a slight modification of (8-3)
is convenient

Yij = µ + αi + εij, εij ∼ N(0, σ2). (8-4)

Now, the situation is described with a µ that corresponds to the overall mean
(across all groups), and then αi = µi − µ is the difference between each group
mean and the overall mean. The individual group mean is then µi = µ + αi,
and the null hypothesis is expressed as

H0 : α1 = · · · = αk = 0, (8-5)

with the alternative H1 : αi ̸= 0 for at least one i. The concept is illustrated in
Figure 8.1 (for k = 3), the black dots are the measurements yij, the red line is the
overall average, red dots are the average within each group, and the blue lines
are the difference between group average and the overall average (α̂i).

Let’s have a look at an example, before we discuss the analysis in further details.
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Treatment

1 2 3
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Figure 8.1: Conceptual plot for the ANOVA problem.

Example 8.1 Basic example

The data used for Figure 8.1 is given by:

Group A Group B Group C
2.8 5.5 5.8
3.6 6.3 8.3
3.4 6.1 6.9
2.3 5.7 6.1

The question is of course: is there a difference in the means of the groups (A, B and
C)? We start by having a look at the observations:
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y = np.array([2.8, 3.6, 3.4, 2.3,
5.5, 6.3, 6.1, 5.7,
5.8, 8.3, 6.9, 6.1])

treatm = pd.Categorical([1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3])

D = pd.DataFrame({’y’: y, ’treatm’: treatm})

D.boxplot(by=’treatm’, grid=False)
plt.title(’Boxplots by categories’)
plt.suptitle(”) # Removing automatic titles
plt.xlabel(”)
plt.show()

1 2 3
2

3

4

5

6

7

8

Boxplots by categories

By using pd.Categorical the treatments are not considered as numerical values by
Python, but rather as factors (or grouping variables), and we can get the boxplot of
the within group variation. This plot gives information about the location of data
and variance homogeneity (the model assumption), of course with only 4 observa-
tions in each group it is difficult to asses this assumption.

Now we can calculate the parameter estimates (µ̂ and α̂i) by:
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mu = np.mean(y)
muis = D.groupby(’treatm’,observed=True)[’y’].mean()
alpha = muis - mu
print(mu)

5.233333333333333

print(muis)

treatm
1 3.025
2 5.900
3 6.775
Name: y, dtype: float64

print(alpha)

treatm
1 -2.208333
2 0.666667
3 1.541667
Name: y, dtype: float64

So our estimate of the overall mean is µ̂ = 5.23, and the group levels (offsets from
the overall sample mean) are α̂1 = −2.21, α̂2 = 0.67 and α̂3 = 1.54. The question we
need to answer is: how likely is it that the observed differences in group means are
random variation? If this is very unlikely, then it can be concluded that at least one
of them is significantly different from zero.

The shown use of the pandas function groupby function is a convenient way of find-
ing the mean of y for each level of the factor treatm. By the way if the mean is substi-
tuted by any other function, e.g. the variance, we could similarly find the sample
variance within each group (we will have a closer look at these later):

D.groupby(’treatm’,observed=True)[’y’].var()

treatm
1 0.349167
2 0.133333
3 1.249167
Name: y, dtype: float64
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8.2.2 Decomposition of variability, the ANOVA table

A characteristic of ANOVA in general and one-way ANOVA specifically is the
fact that the overall variability (measured by the total variation) decomposes
into interpretable components – it is these components which are used for hy-
pothesis testing and more. For the one-way ANOVA presented in this section
the total variation, that is, the variation calculated across all the data completely
ignoring the fact that the data falls in different groups, can be decomposed into
two components: a component expressing the group differences and a compo-
nent expressing the (average) variation within the groups:

Theorem 8.2 Variability decomposition

The total sum of squares (SST) can be decomposed into sum of squared
errors (SSE) and treatment sum of squares (SS(Tr))

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2

︸ ︷︷ ︸
SSE

+
k

∑
i=1

ni(ȳi − ȳ)2

︸ ︷︷ ︸
SS(Tr)

, (8-6)

where

ȳ =
1
n

k

∑
j=1

ni

∑
j=1

yij, ȳi =
1
ni

ni

∑
j=1

yij. (8-7)

Expressed in short form

SST = SS(Tr) + SSE. (8-8)

Before we turn to the proof of the theorem, we will briefly discuss some in-
terpretations and implications of this. First we look at each of the three terms
separately.

The SST expresses the total variation. Let us compare with Equation (1-6) the
formula for sample variance

s2 =
1

n − 1

n

∑
i=1

(xi − x̄)2. (8-9)

We can see that if the sample variance formula is applied to the the yijs joined
into a single sample (i.e. a single index counts through all the n observations),
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then the sample variance is simply SST divided by n − 1. The sample variance
expresses then the average variation per observation. Therefore, we have

SST = (n − 1) · s2
y, (8-10)

where s2
y is the sample variance for all the yijs seen as a single sample (i.e. a

sample from single population).

The group mean differences are quantified by the SS(Tr) component, which
can basically be seen directly from the definition, where the overall mean is
subtracted from each group mean. As discussed above it can alternatively be
expressed by deviations α̂i

SS(Tr) =
k

∑
i=1

ni(ȳi − ȳ)2 =
k

∑
i=1

niα̂
2
i , (8-11)

so SS(Tr) is the sum of squared αi’s multiplied by the number of observations
in group ni.

Remark 8.3

SS(Tr) is also the key expression to get the idea of why we call the whole
thing “analysis of variance”: if we, for a second, assume that we have the
same number of observations in each group: n1 = . . . = nk, and let us call
this common number m. Then we can express SS(Tr) directly in terms of the
variance of the k means

SS(Tr) = (k − 1) · m · s2
means, (8-12)

where

s2
means =

1
k − 1

k

∑
i=1

(ȳi − ȳ)2. (8-13)

Let us emphasize that the formulas of this remark is not thought to be for-
mulas that we use for practical purposes, but they are expressed to show ex-
plicitly that “SS(Tr) quantifies the group differences by variation”. Another
way of thinking of SS(Tr) is that it quantifies the “the variance explained by
grouping the observations“, i.e. the variance explained by fitting a model
with a mean for each group.

Finally, SSE expresses the average variability within each group, as each in-
dividual observation yij is compared with the mean in the group to which it
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belongs. In Figure 8.1 these are the differences between each of the black dots
with the relevant read dot. Again we can link the formula given above to basic
uses of the sample variance formula:

Theorem 8.4 Within group variability

The sum of squared errors SSE divided by n − k, also called the residual
mean square MSE = SSE/(n − k) is the weighted average of the sample
variances from each group

MSE =
SSE

n − k
=

(n1 − 1)s2
1 + · · ·+ (nk − 1)s2

k
n − k

, (8-14)

where s2
i is the variance within the ith group

s2
i =

1
ni − 1

ni

∑
j=1

(yij − ȳi)
2. (8-15)

When k = 2, that is, we are in the two-sample case presented in Section 3.2,
the result here is a copy of the pooled variance expression in Method 3.52

For k = 2 : MSE = s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n − 2

. (8-16)

Intuitively, we would say that if some of the α̂i’s are large (in absolute terms),
then it is evidence against the null hypothesis of equal means. So a large SS(Tr)
value is evidence against the null hypothesis. It is also natural that “large”
should be relative to some variation. SSE is the within group variation, and it
also seems reasonable that if α̂i is large and the variation around µ̂i is small then
this is evidence against the null hypothesis. It does therefore seem natural to
compare SS(Tr) and SSE, and we will get back to the question of exactly how to
do this after the proof of Theorem 8.2:
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Proof

Add and subtract ȳi in SST to get

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2 =
k

∑
i=1

ni

∑
j=1

(yij − ȳi + ȳi − ȳ)2 (8-17)

=
k

∑
i=1

ni

∑
j=1

[
(yij − ȳi)

2 + (ȳi − ȳ)2 + 2(yij − ȳi)(ȳi − ȳ)
]

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2 +

k

∑
i=1

ni

∑
j=1

(ȳi − ȳ)2 + 2
k

∑
i=1

ni

∑
j=1

(yij − ȳi)(ȳi − ȳ)

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2 +

k

∑
i=1

ni(ȳi − ȳ)2 + 2
k

∑
i=1

(ȳi − ȳ)
ni

∑
j=1

(yij − ȳi),

now observe that ∑ni
j=1(yij − ȳi) = 0, and the proof is completed.

■

Example 8.5

We can now continue our example and calculate SST, SSE, and SS(Tr):

muis = muis.values # Coverting to numpy array
alpha = muis - mu
SST = np.sum((y - mu)**2)
SSE = (np.sum((y[treatm == 1] - muis[0])**2) +

np.sum((y[treatm == 2] - muis[1])**2) +
np.sum((y[treatm == 3] - muis[2])**2))

SSTr = 4 * np.sum(alpha**2)
print(np.round([SST, SSE, SSTr],3))

[35.987 5.195 30.792]

For these data we have that n1 = n2 = n3 = 4, so according to Theorem 8.2 we could
also find SSE from the average of the variances within each group:

vars = D.groupby(’treatm’,observed=True)[’y’].var()
print((12 - 3) * np.mean(vars))

5.195000000000002
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Figure 8.2: pdf of the F-distribution with 2 and 9 degrees of freedom (black line),
and with 4 and 9 degrees of freedom (red line).

Now we have established that we should compare SS(Tr) and SSE in some way,
it should of course be quantified exactly in which way they should be compared.
Now it turns out that the numbers SS(Tr)/(k − 1) and SSE/(n − k) are both
central estimators for σ2, when the null hypothesis is true, and we can state the
following theorem:

Theorem 8.6

Under the null hypothesis

H0 : αi = 0, i = 1, 2, . . . , k, (8-18)

the test statistic

F =
SS(Tr)/(k − 1)

SSE/(n − k)
, (8-19)

follows an F-distribution with k − 1 and n − k degrees of freedom.

The F-distribution is generated by the ratio between independent χ2 distributed
random variables, and the shape is shown in Figure 8.2 for two particular choices
of degrees of freedom.

As we have discussed before, the null hypothesis should be rejected if SS(Tr) is
large and SSE is small. This implies that we should reject the null hypothesis
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when the test statistic (F) is large in the sense of Theorem 8.6 (compare with
F1−α). The statistics are usually collected in an ANOVA table like this:

Source of Degrees of Sums of Mean sum of Test- p-
variation freedom squares squares statistic F value
Treatment k − 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 Fobs =
MS(Tr)

MSE P(F > Fobs)

Residual n − k SSE MSE = SSE
n−k

Total n − 1 SST

Example 8.7

We can now continue with our example and find the F-statistic and the p-value:

F = (SSTr / (3 - 1)) / (SSE / (12 - 3))
pv = 1 - stats.f.cdf(F, 3 - 1, 12 - 3)
print(F, pv)

26.67228103946101 0.0001650052218172826

So we have a test statistic F = 26.7 and a p-value equal to 0.000165 and we reject the
null hypothesis on e.g. level α = 0.05. The calculations can of course also be done
directly in Python, by:

fit = smf.ols(’y ∼ treatm’, data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
treatm 2.0 30.791667 15.395833 26.672281 0.000165
Residual 9.0 5.195000 0.577222 NaN NaN

Note, that in the direct Python calculation it is very important to include treatm as a
factor (categorical), in order to get the correct analysis.

If we reject the null hypothesis, it implies that the observations can be finally
described by the initial model re-stated here

Yij = µ + αi + εij, εij ∼ N(0, σ2), (8-20)

and the estimate of the error variance σ2 is σ̂2 = SSE/(n − k) = MSE.
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Remark 8.8 When multiple groups = 2 groups

When k = 2, that is, we are in the two-sample case studied in Chapter 3, we
already saw above in Theorem 8.4 that MSE = s2

p. Actually, this means that
the analysis we get from a one-way ANOVA when we apply it for only k = 2
groups, which could be perfectly fine - nothing in the ANOVA approach
really relies on k having to be larger than 2 - corresponds to the pooled t-test
given as Method 3.53. More exact

for k = 2 : Fobs = t2
obs, (8-21)

where tobs is the pooled version coming from Methods 3.52 and 3.53. Thus
the p-value obtained from the k = 2 group ANOVA equals exactly the p-
value obtained from the pooled t-test given in Method 3.53.

8.2.3 Post hoc comparisons

If we reject the overall null hypothesis above, and hence conclude that αi ̸= 0 for
at least one i it makes sense to ask which of the treatments are actually different.
That is, trying to meet the second of the two major purposes indicated in the
beginning. This can be done by pairwise comparison of the treatments. We
have already seen in Chapter 3, that such comparison could be based on the t-
distribution. We can construct confidence interval with similar formulas except
that we should use MSE = SSE/(n − k) as the estimate of the error variance
and hence also n − k degrees of freedom in the t-distribution:
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Method 8.9 Post hoc pairwise confidence intervals

A single pre-planned (1 − α) · 100% confidence interval for the difference
between treatment i and j is found as

ȳi − ȳj ± t1−α/2

√√√√MSE

(
1
ni

+
1
nj

)
, (8-22)

where t1−α/2 is based on the t-distribution with n − k degrees of freedom.

If all M = k(k − 1)/2 combinations of pairwise confidence intervals are
calculated using the formula M times, but each time with αBonferroni = α/M
(see Remark 8.14 below).

Similarly one could do pairwise hypothesis tests:

Method 8.10 Post hoc pairwise hypothesis tests

A single pre-planned level α hypothesis tests

H0 : µi = µj, H1 : µi ̸= µj, (8-23)

is carried out by

tobs =
ȳi − ȳj√

MSE
(

1
ni
+ 1

nj

) , (8-24)

and

p-value = 2 · P(T > |tobs|), (8-25)

where the t-distribution with n − k degrees of freedom is used.

If all M = k(k − 1)/2 combinations of pairwise hypothesis tests are carried
out use the approach M times but each time with test level αBonferroni = α/M
(see Remark 8.14 below).



Chapter 8 8.2 ONE-WAY ANOVA 14

Example 8.11

Returning to our small example we get the pairwise confidence intervals. If the
comparison of A and B was specifically planned before the experiment was carried
out, we would find the 95%-confidence interval as:

print(muis[0] - muis[1] + np.array([-1, 1]) *
stats.t.ppf(1 - 0.05 / 2, 12 - 3) * np.sqrt(SSE / (12 - 3) *

(1/4 + 1/4)))

[-4.090 -1.660]

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:

tobs = (muis[0] - muis[1]) / np.sqrt(SSE / (12 - 3) * (1/4 + 1/4))
print(2 * (1 - stats.t.cdf(np.abs(tobs), 12 - 3)))

0.0004613963065729365

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =

0.016667:



Chapter 8 8.2 ONE-WAY ANOVA 15

alpha_bonf = 0.05 / 3
# A-B
print(alpha[0] - alpha[1] + np.array([-1, 1]) *

stats.t.ppf(1-alpha_bonf/2, 12 - 3) * np.sqrt(SSE/(12 - 3) * (1/4
+ 1/4)))

[-4.451 -1.299]

# A-C
print(alpha[0] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1-alpha_bonf/2, 12 - 3) * np.sqrt(SSE/(12 - 3) * (1/4
+ 1/4)))

[-5.326 -2.174]

# B-C
print(alpha[1] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1-alpha_bonf/2, 12 - 3) * np.sqrt(SSE/(12 - 3) * (1/4
+ 1/4)))

[-2.451 0.701]

and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that now.

The so-called Bonferroni correction done above, when we do all possible post
hoc comparisons, has the effect that it becomes more difficult (than without the
correction) to claim that two treatments have different means.

Example 8.12

The 0.05/3-critical value with 9 degrees of freedom is t0.9917 = 2.933 whereas the
0.05-critical value is t0.975 = 2.262:

print(stats.t.ppf(1 - alpha_bonf / 2, 12 - 3), stats.t.ppf(1 - 0.05 /
2, 12 - 3))

2.9333240883739897 2.2621571628540993
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So two treatment means would be claimed different WITH the Bonferroni correction
if they differ by more than half the width of the confidence interval

2.933 ·
√

SSE/9 · (1/4 + 1/4) = 1.576 (8-26)

whereas without the Bonferroni correction should only differ by more than

2.262 ·
√

SSE/9 · (1/4 + 1/4) = 1.215 (8-27)

to be claimed significantly different.

Remark 8.13 Least Significant Difference (LSD) values

If there is the same number of observations in each treatment group m =
n1 = . . . = nk the LSD value for a particular significance level

LSDα = t1−α/2
√

2 · MSE/m (8-28)

will have the same value for all the possible comparisons made.
The LSD value is particularly useful as a “measuring stick” with which we
can go and compare all the observed means directly: the observed means
with difference higher than the LSD are significantly different on the α-level.
When used for all of the comparisons, as suggested, one should as level use
the Bonferroni corrected version LSDαBonferroni (see Remark 8.14 below for an
elaborated explanation).
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Remark 8.14 Significance by chance in multiple testings!

Imagine that we performed an ANOVA in a situation with k = 15 groups.
And then we do all the M = 15 · 14/2 = 105 possible pairwise hypothesis
tests. Assume for a moment that the overall null hypothesis is true, that
is, there really are no mean differences between any of the 15 groups. And
think about what would happen if we still performed all the 105 tests with
α = 0.05! How many significant results would we expect among the 105
hypothesis tests? The answer is that we expect α · 105 = 0.05 · 105 = 5.25,
that is, approximately 5 significant tests are expected. And what would the
probability be of getting at least one significant test out of the 105? The
answer to this question can be found using the binomial distribution

P("At least one significant result in 105 independent tests")

= 1 − 0.95105

= 0.9954. (8-29)

So whereas we, when performing a single test, have a probability of α = 0.05
of getting a significant result, when we shouldn’t, we now have an overall
Type I error probability of seeing at least one significant result, when we
shouldn’t, of 0.9954! This is an extremely high (overall) Type 1 risk. This is
also sometimes called the “family wise” Type 1 risk. In other words, we will
basically always with k = 15 see at least one significant pairwise difference,
if we use α = 0.05. This is why we recommend to use a correction method
when doing multiple testings like this. The Bonferroni correction approach
is one out of several different possible approaches for this.

Using the Bonferroni corrected αBonferroni = 0.05/105 in this case for each of
the 105 tests would give the family wise Type 1 risk

P("At least one significant result in 105 independent tests")

= 1 − (1 − 0.05/105)105

= 0.049 (8-30)

8.2.4 Model control

The assumptions for the analysis we have applied in the one-way ANOVA
model are more verbally expressed as:



Chapter 8 8.2 ONE-WAY ANOVA 18

1. The data comes from a normal distribution in each group

2. The variances from each group are the same

The homogeneous variances assumption can be controlled by simply looking at
the distributions within each sample, most conveniently for this purpose by the
group-wise box plot already used in the example above.

The normality within groups assumption could in principle also be investigated
by looking at the distributions within each group - a direct generalization of
what was suggested in Chapter 3 for the two-group setting. That is, one could
do a q-q plot within each group. It is not uncommon though, that the amount of
data within a single group is too limited for a meaningful q-q plot investigation.
Indeed for the example here, we have only 4 observations in each group, and
q-q plots for 4 observations do not make much sense.

There is an alternative, where the information from all the groups are pooled
together to a single q-q plot. If we pool together the 12 residuals, that is, within
group deviations, they should all follow the same zero-mean normal distribu-
tion, given by

εij ∼ N(0, σ2). (8-31)

Method 8.15 Normality control in one-way ANOVA

To control for the normality assumptions in one-way ANOVA we perform a
q-q plot on the pooled set of n estimated residuals

eij = yij − ȳi, j = 1, . . . , ni, i = 1 . . . , k. (8-32)

Example 8.16

For the basic example we get the normal q-q plot of the residuals by

residuals = fit.resid
sm.qqplot(residuals, line=’q’,a=1/2)
plt.tight_layout()
plt.show()
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print(residuals)

0 -0.975
1 -0.725
2 -0.675
3 -0.400
4 -0.225
5 -0.200
6 0.125
7 0.200
8 0.375
9 0.400
10 0.575
11 1.525
dtype: float64

8.2.5 A complete worked through example: plastic types for lamps

Example 8.17 Plastic types for lamps

On a lamp two plastic screens are to be mounted. It is essential that these plastic
screens have a good impact strength. Therefore an experiment is carried out for 5
different types of plastic. 6 samples in each plastic type are tested. The strengths of
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these items are determined. The following measurement data was found (strength
in kJ/m2):

Type of plastic
I II III IV V

44.6 52.8 53.1 51.5 48.2
50.5 58.3 50.0 53.7 40.8
46.3 55.4 54.4 50.5 44.5
48.5 57.4 55.3 54.4 43.9
45.2 58.1 50.6 47.5 45.9
52.3 54.6 53.4 47.8 42.5

We run the following in Python:

D = pd.DataFrame({
’strength’: [44.6, 52.8, 53.1, 51.5, 48.2, 50.5, 58.3, 50.0,

53.7, 40.8,
46.3, 55.4, 54.4, 50.5, 44.5, 48.5, 57.4, 55.3,

54.4, 43.9,
45.2, 58.1, 50.6, 47.5, 45.9, 52.3, 54.6, 53.4,

47.8, 42.5],
’plastictype’: pd.Categorical(np.tile(np.arange(1, 6), 6))

})

D.boxplot(by=’plastictype’, grid=False)
plt.suptitle(”) # Removing automatic titles
plt.title(”)
plt.xlabel(’Plastic type’)
plt.ylabel(’Strength’)
plt.tight_layout()
plt.show()
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fit = smf.ols(’strength ∼ plastictype’, data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
plastictype 4.0 491.76 122.9400 18.233863 3.987701e-07
Residual 25.0 168.56 6.7424 NaN NaN

The ANOVA results are more nicely put in a table here:

Df Sum Sq Mean Sq F value Pr(>F)
Plastictype 4 491.76 122.94 18.23 4 · 10−7

Residuals 25 168.56 6.74

From the box plot we see that there appears to be group mean differences and ex-
tremely low p-value in the ANOVA table confirms this: there is very strong evidence
against the null hypothesis of the five means being the same

H0 : µ1 = · · · = µ5. (8-33)

Model assumptions: the box plots do not indicate clear variance differences (al-
though it can be a bit difficult to know exactly how different such patterns should
be for it to be a problem. Statistical tests exist for such varicance comparisons, but
they are not included here). Let us check for the normality by doing a normal q-q
plot on the residuals:

sm.qqplot(fit.resid, line=’q’, a=1/2)
plt.tight_layout()
plt.show()
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Or using the idea of comparing with repeated plots on the standardized residuals:
(See Section 3.1.8)
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There appears to be no important deviation from normality.

To complete the story about (quantifying) the five plastic types, we first compute the
five means:

print(D.groupby(’plastictype’,observed=True)[’strength’].mean())

plastictype
1 47.9
2 56.1
3 52.8
4 50.9
5 44.3
Name: strength, dtype: float64

And then we want to construct the M = 5 · 4/2 = 10 different confidence intervals
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using Method 8.9. As all nis equal 6 in this case, all 10 confidence intervals will have
the same width, and we can use Remark 8.13 and compute the (half) width of the
confidence intervals, the LSD-value. And since there are 10 multiple comparisons
we will use αBonferroni = 0.05/10 = 0.005:

LSD_0_005 = stats.t.ppf(1 - 0.005 / 2, 25) * np.sqrt(2 * 6.74 / 6)
print(LSD_0_005)

4.61387770149341

So Plastictypes are significantly different from each other if they differ by more than
4.61. A convenient way to collect the information about the 10 comparisons is by
ordering the means from smallest to largest and then using the so-called compact
letter display:

Plastictype Mean
5 44.3 a
1 47.9 ab
4 50.9 bc
3 52.8 cd
2 56.1 d

Plastic types with a mean difference less than the LSD-value, hence not significantly
different share letters. Plastic types not sharing letters are significantly different. We
can hence read off all the 10 comparisons from this table.

One could also add the compact letter information to the box plot for a nice plotting -
it is allowed to be creative (while not changing the basic information and the results!)
in order to communicate the results.

8.3 Two-way ANOVA

8.3.1 Data structure and model

The one-way ANOVA is the natural multi-sample extension of the indepen-
dent two-sample situation covered in Section 3.2. The k samples are hence com-
pletely independent from each other, which e.g. in a clinical experiment would
mean that different patients get different treatments – and hence each patient
only tries a single treatment. Often this would be the only possible way to do a
comparison of treatments.

However, sometimes it will be possible to apply multiple treatments to the same
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patient (with some time in between). This could then lead to a multi-treatment
setup, where the sample within each treatment consists of the same patients.
This is the natural extension of the paired-design setup covered in Section 3.2.3,
where we “pair” if there is exactly 2 treatments. With more than two treatments
we use the phrase “block”. A block would then be the patient in this case -
and the same blocks then appear in all treatment samples. The “block” name
comes from the historical background of these methods coming from agricul-
tural field trials, where a block would be an actual piece of land within which
all treatments are applied.

Remark 8.18 Design: independent sampling or blocking?

For the project manager who is in charge of designing the study there will
be a choice to make in cases where both approaches are practicable feasi-
ble: should the independent samples approach or the blocked approach be
used? Should we use, say, 4 groups of 20 patients each, that is 80 patients all
together, or should we use the same 20 patients in each of the four groups?
The costs would probably be more or less the same. It sounds nice with 80
patients rather than 20? However, the answer is actually pretty clear if what-
ever we are going to measure will vary importantly from person to person.
And most things in medical studies do vary a lot from person to person due
to many things: gender, age, weight, BMI, or simply due to genetic differ-
ences that means that our bodies will respond differently to the medicine.
Then the blocked design would definitely be the better choice! This is so,
as we will see below, in the analysis of the blocked design the block-main-
variability is accounted for and will not “blur” the treatment difference sig-
nal. In the independent design the person-to-person variability may be the
main part of the “within group” variability used for the statistical analysis.
Or differently put: in a block design each patient would act as his/her own
control, the treatment comparison is carried out “within the block”.

For the actual study design it would in both cases be recommended to ran-
domize the allocation of patients as much as possible: In the independent
design patients should be allocated to treatments by randomization. In the
block design all patients receive all treatments but then one would random-
ize the order in which they receive the treatments. For this reason these two
types of experimental designs are usually called the Completely Randomized
Design and the Randomized Block Design.

We looked above in the one-way part at an example with 3 treatments with
4 observations for each. If the observations were on 4 different persons (and
not 12) it would make sense and would be important to include this person
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variability in the model. The resulting model becomes

Yij = µ + αi + β j + εij, εij ∼ N(0, σ2), (8-34)

so there is an overall mean µ, a treatment effect αi and a block effect β j and our
usual random error term εij.

The design is illustrated in the table below, so we have k treatments (A1, . . . ,Ak)
and l blocks (B1, . . . ,Bl):

B1 . . . Bl
A1 y11 . . . y1,l
...

... . . .
...

Ak yk,1 . . . yk,l

We can now find the parameters in the model above by

µ̂ =
1

k · l

k

∑
i=1

l

∑
j=1

yij, (8-35)

α̂i =

(
1
l

l

∑
j=1

yij

)
− µ̂, (8-36)

β̂ j =

(
1
k

k

∑
i=1

yij

)
− µ̂. (8-37)

Or expressed more compact, with the definitions of the terms obvious from the
above

µ̂ = ¯̄y, (8-38)
α̂i = ȳi· − ¯̄y, (8-39)

β̂ j = ȳ·j − ¯̄y. (8-40)

In a way, these means are the essential information in these data. All the rest we
do is just all the statistics to distinguish signal from noise. It does not change
the fact, that these means contain the core story. It also shows explicitly how we
now compute means, not only across one way in the data table, but also across
the other way. We compute means both row-wise and column-wise. Hence the
name: two-way ANOVA.
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Example 8.19

Lets assume that the data we used in the previous section was actually a result of a
randomized block design and we could therefore write:

Group A Group B Group C
Block 1 2.8 5.5 5.8
Block 2 3.6 6.3 8.3
Block 3 3.4 6.1 6.9
Block 4 2.3 5.7 6.1

In this case we should of course keep track of the blocks as well as the treatments:

y = np.array([2.8, 3.6, 3.4, 2.3,
5.5, 6.3, 6.1, 5.7,
5.8, 8.3, 6.9, 6.1])

treatm = pd.Categorical([1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3])

block = pd.Categorical([1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4])

D = pd.DataFrame({’y’: y, ’treatm’: treatm, ’block’: block})

Now we can calculate the parameter estimates (µ̂ and α̂i, and β̂ j):
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mu = np.mean(y)
alpha = D.groupby(’treatm’,observed=True)[’y’].mean() - mu
beta = D.groupby(’block’,observed=True)[’y’].mean() - mu
print(mu)

5.233333333333333

print(alpha)

treatm
1 -2.208333
2 0.666667
3 1.541667
Name: y, dtype: float64

print(beta)

block
1 -0.533333
2 0.833333
3 0.233333
4 -0.533333
Name: y, dtype: float64

so our estimates of the overall mean (µ) and αi remain the same while the estimated
block effects are β̂1 = −0.53, β̂2 = 0.83, β̂3 = 0.23 and β̂4 = −0.53.

8.3.2 Decomposition of variability and the ANOVA table

In the same way as we saw for the one-way ANOVA, there exists a decomposi-
tion of variation for the two-way ANOVA:
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Theorem 8.20 Variation decomposition

The total sum of squares (SST) can be decomposed into sum of squared
errors (SSE), treatment sum of squares (SS(Tr)), and a block sum of squares
(SS(Bl))

k

∑
i=1

l

∑
j=1

(yij − µ̂)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

l

∑
j=1

(yij − α̂i − β̂ j − µ̂)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

α̂2
i︸ ︷︷ ︸

SS(Tr)

+ k ·
l

∑
j=1

β̂2
j︸ ︷︷ ︸

SS(Bl)

=
k

∑
i=1

l

∑
j=1

(yij − ȳi· − ȳ·j + ¯̄y)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

(ȳi· − ¯̄y)2

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

(ȳ·j − ¯̄y)2

︸ ︷︷ ︸
SS(Bl)

,

(8-41)

Expressed in short form

SST = SS(Tr) + SS(Bl) + SSE. (8-42)

Note, how the SST and SS(Tr) are found exactly as in the one-way ANOVA.
If one ignores the block-way of the table, the two-way data has exactly the
same structure as one-way data (with the same number of observations in each
group). Further, note how SS(Bl) corresponds to finding a “one-way SS(Tr)”,
but on the other way of the table (and ignoring the treatment-way of the data
table). So from a computational point of view, finding these three, that is, find-
ing SST, SS(Tr) and SS(Bl) is done by known one-way methodology. And then
the last one, SSE, could then be found from the decomposition theorem as

SSE = SST − SS(Tr)− SS(Bl). (8-43)

Example 8.21

Returning to the example we get (SST and SS(Tr) remain unchanged):

beta = beta.values # Converting to numpy array
SSBl = 3 * np.sum(beta**2)
SSE = SST - SSTr - SSBl
print(np.round([SST, SSE, SSTr, SSBl],3))

[35.987 1.242 30.792 3.953]
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Again, tests for treatment effects and block effects are done by comparing SS(Tr)
or SS(Bl) with SSE:

Theorem 8.22

Under the null hypothesis

H0,Tr : αi = 0, i = 1, 2, . . . , k, (8-44)

the test statistic

FTr =
SS(Tr)/(k − 1)

SSE/((k − 1)(l − 1))
, (8-45)

follows an F-distribution with k − 1 and (k − 1)(l − 1) degrees of freedom.
Further, under the null hypothesis

H0,Bl : β j = 0, j = 1, 2, . . . , l, (8-46)

the test statistic

FBl =
SS(Bl)/(l − 1)

SSE/((k − 1)(l − 1))
, (8-47)

follows an F-distribution with l − 1 and (k − 1)(l − 1) degrees of freedom.

Example 8.23

Returning to our example we get:
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# Test statistics
Ftr = SSTr / (3-1) / ( SSE / ((3-1) * (4-1)))
Fbl = SSBl / (4-1) / ( SSE / ((3-1) * (4-1)))
print(Ftr, Fbl)

74.39597315436248 6.367785234899335

# p-values
pv_tr = 1 - stats.f.cdf(Ftr, 3 - 1, (3 - 1) * (4 - 1))
pv_bl = 1 - stats.f.cdf(Fbl, 4 - 1, (3 - 1) * (4 - 1))
print(pv_tr, pv_bl)

5.823829718287765e-05 0.027048337827318747

or directly in Python:

fit = smf.ols(’y ∼ treatm + block’, data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
treatm 2.0 30.791667 15.395833 74.395973 0.000058
block 3.0 3.953333 1.317778 6.367785 0.027048
Residual 6.0 1.241667 0.206944 NaN NaN

Df Sum Sq Mean Sq F value Pr(>F)
treatm 2 30.79 15.40 74.40 0.0001
block 3 3.95 1.32 6.37 0.0270
Residuals 6 1.24 0.21

we see that the block effect is actually significant on a 5% confidence level, and also
that the p-value for the treatment effect is changed (the evidence against H0,Tr is
stronger) when we accounted for the block effect.

The test statistics and p-values are often collected in an analysis of variance table
as already shown above:
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Source of Degrees of Sums of Mean sums of Test p-
variation freedom squares squares statistic F value
Treatment k − 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 FTr =
MS(Tr)

MSE P(F > FTr)

Block l − 1 SS(Bl) MS(Bl) = SS(Bl)
l−1 FBl =

MS(Bl)
MSE P(F > FBl)

Residual (l − 1)(k − 1) SSE MSE = SSE
(k−1)(l−1)

Total n − 1 SST

8.3.3 Post hoc comparisons

The post hoc investigation is done following the same approach and principles
as for one-way ANOVA with the following differences:

1. Use the MSE and/or SSE from the two-way analysis instead of the MSE
and/or SSE from the one-way analysis

2. Use (l − 1)(k − 1) instead of n − k as degrees of freedom and as denomi-
nator for SSE

With these changes the Method boxes 8.9 and 8.10 and the Remark 8.13 can be
used for post hoc investigation of treatment differences in a two-way ANOVA.

Example 8.24

Returning to our small example we now find the pairwise treatment confidence in-
tervals within the two-way analysis. If the comparison of A and B was specifically
planned before the experiment was carried out, we would find the 95%-confidence
interval as:

print(muis[0] - muis[1] + np.array([-1,1]) *
stats.t.ppf(0.975, (4-1)*(3-1)) * np.sqrt(SSE/((4-1) *

(3-1))*(1/4 + 1/4)))

[-3.662 -2.088]

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:
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tobs = (muis[0] - muis[1]) / np.sqrt(SSE/6 * (1/4 + 1/4))
print(2 * (1 - stats.t.cdf(abs(tobs), 6)))

0.0001094734143394227

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =

0.017:

alpha = alpha.values
alpha_bonf = 0.05 / 3
# A vs. B
print(alpha[0] - alpha[1] + np.array([-1, 1]) *

stats.t.ppf(1 - alpha_bonf/2, 6) * np.sqrt(SSE/6 * (1/4 + 1/4)))

[-3.932 -1.818]

# A vs. C
print(alpha[0] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1 - alpha_bonf/2, 6) * np.sqrt(SSE/6 * (1/4 + 1/4)))

[-4.807 -2.693]

# B vs. C
print(alpha[1] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1 - alpha_bonf/2, 6) * np.sqrt(SSE/6 * (1/4 + 1/4)))

[-1.932 0.182]

and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that.
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8.3.4 Model control

Also model control runs almost exactly the same way for two-way ANOVA as
for one-way:

• Use a q-q plot on residuals to check for the normality assumption

• Check variance homegenity by categorized box plots

The only difference is that the box plotting to investigate variance homogeneity
should be done on the residuals - NOT on the actual data. And that we can
investigate both potential treatment heterogeneity as block heterogeneity.

Example 8.25

First the residual normality plot:

sm.qqplot(fit.resid, line=’q’, a=1/2)
plt.tight_layout()
plt.show()
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print(fit.resid.values)

[-0.442 -0.433 -0.258 -0.192 -0.142 -0.108 -0.033 0.133 0.142 0.308
0.333 0.692]

Then the investigation of variance homogeneity:
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D[’residuals’] = fit.resid # Add residuals to DataFrame
fig, ax = plt.subplots(ncols=2)
D.boxplot(column=’residuals’, by=’treatm’, ax=ax[0], grid=False)
ax[0].set_title(’Residuals by treatment’)
D.boxplot(column=’residuals’, by=’block’, ax=ax[1], grid=False,)
ax[1].set_title(’Residuals by block’)
plt.suptitle(”)
plt.tight_layout()
plt.show()
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0.25

0.00

0.25

0.50

Residuals by treatment
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Actually, if we’ve had data with a higher number of observations for each block, we
might have had a problem here as blocks 2 and 3 appears to be quite different on
their variability, however since there are very few observations (3 in each block) it is
not unlikely to get this difference in variance when there is no difference (but again:
it is not very easy to know, exactly where the limit is between what is OK and what
is not OK in a situation like this. It is important information to present and take into
the evaluation of the results, and in the process of drawing conclusions).

8.3.5 A complete worked through example: Car tires

Example 8.26 Car tires

In a study of 3 different types of tires (“treatment”) effect on the fuel economy, drives
of 1000 km in 4 different cars ("blocks") were carried out. The results are listed in the
following table in km/l.
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Car 1 Car 2 Car 3 Car 4 Mean
Tire 1 22.5 24.3 24.9 22.4 22.525
Tire 2 21.5 21.3 23.9 18.4 21.275
Tire 3 22.2 21.9 21.7 17.9 20.925
Mean 21.400 22.167 23.167 19.567 21.575

Let us analyse these data with a two-way ANOVA model, but first some explorative
plotting:

# Collecting the data in a data frame
D = pd.DataFrame({

’y’: [22.5, 24.3, 24.9, 22.4,
21.5, 21.3, 23.9, 18.4,
22.2, 21.9, 21.7, 17.9],

’car’: pd.Categorical([1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]),
’tire’: pd.Categorical([1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]),

})

fig, ax = plt.subplots(ncols=2)
D.boxplot(column=’y’, by=’tire’, ax=ax[0],grid=False)
ax[0].set_title(’Boxplots by tire’)
D.boxplot(column=’y’, by=’car’, ax=ax[1],grid=False)
ax[1].set_title(’Boxplots by car’)
plt.suptitle(”)
plt.tight_layout()
plt.show()
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Then the actual two-way ANOVA:



Chapter 8 8.3 TWO-WAY ANOVA 37

fit = smf.ols(’y ∼ car + tire’, data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
car 3.0 25.175833 8.391944 7.025814 0.021726
tire 2.0 15.926667 7.963333 6.666977 0.029888
Residual 6.0 7.166667 1.194444 NaN NaN

Df Sum Sq Mean Sq F value Pr(>F)
car 3 25.18 8.39 7.03 0.0217
tire 2 15.93 7.96 6.67 0.0299
Residuals 6 7.17 1.19

Conclusion: Tires (treatments) are significantly different and Cars (blocks) are sig-
nificantly different.

And the model control (for the conclusions to be validated). First the residual nor-
mality plot:

sm.qqplot(fit.resid, line=’q’, a=1/2)
plt.tight_layout()
plt.show()
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Then the investigation of variance homogeneity:
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D[’residuals’] = fit.resid # Add residuals to DataFrame
fig, ax = plt.subplots(ncols=2)
D.boxplot(column=’residuals’, by=’car’, ax=ax[0],grid=False)
ax[0].set_title(’Residuals by car’)
D.boxplot(column=’residuals’, by=’tire’, ax=ax[1],grid=False)
ax[1].set_title(’Residuals by tire’)
plt.suptitle(”)
plt.tight_layout()
plt.show()
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It seems like the variance for Car 2 and Car 3 is difference, however, as in the previ-
ous example, there are very few observations (only 3) for each car, hence this differ-
ence in variation is not unlikely if there is no difference. Thus we find that there do
not see any important deviations from the model assumptions.

Finally, the post hoc analysis, first the treatment means:

print(D.groupby(’tire’,observed=True)[’y’].mean())

tire
1 23.525
2 21.275
3 20.925
Name: y, dtype: float64

We can find the 0.05/3 (Bonferroni-corrected) LSD-value from the two-way version
of Remark 8.13:
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LSD_bonf = stats.t.ppf(1-0.05/6, 6) * np.sqrt(2*1.19/4)
print(LSD_bonf)

2.5358194018640283

So tires are significantly different from each other if they differ by more than 2.54. A
convenient way to collect the information about the 3 comparisons is by ordering the
means from smallest to largest and then using the so-called compact letter display:

Tire Mean
3 20.925 a
2 21.275 a b
1 23.525 b

There is no significant difference between mean of Tire 2 and 3, and no significant
difference between mean of 2 and 1, but there is significant difference between mean
of 1 and 3.

8.4 Perspective

We have already seen how the R-version of the ANOVA, both one-way and
two-way, are carried out by the R-function lm. We also used lm for simple and
multiple linear regression (MLR) analysis in Chapters 5 and 6. “lm” stands for
“linear model”, and in fact from a mathematical perspective all these models
are what can be termed linear models, or sometimes general linear models. So
differently put, the ANOVA models can in fact be expressed as multiple linear
regression models, and the theory and matrix notation etc. from MLR can be
used to also work with ANOVA models.

This becomes convenient to understand if one moves on to situations, models
and statistical analysis going beyond the current course. An example of this
would be situations where we have as well factors as quantitative (continuous)
regression input in the same data set.

Important to know also is that the two basic ANOVA versions presented in this
material is just the start to be able to handle more general situations. An exam-
ple could be that, a two-way ANOVA could also occur in a different way than
shown here: if we perform what would be a completely randomized study,
that is, we have independent sampled groups, but with the groups being repre-
sented by a two-way treatment factor structure, say, factor A with 5 levels and
factor B with 3 levels. Hence, we have all 15 groups consisting of all combina-
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tions of the two treatments, but with several observations within each of the 15
groups. This would sometimes be called a two-way ANOVA with replications,
whereas the randomized block setting covered above then would be the two-
way ANOVA without replication (there is only and exactly one observation for
each combination of treatment and block).

And then the next step could be even more than two treatment factors, and
maybe such a multi-factorial setting could even be combined with blocking and
maybe some quantitative x-input (then often called covariates) calling for ex-
tensions of all this.

Another important extension direction are situations with different levels of ob-
servations/variability: there could be hierarchical structures in the data, e.g.
repeated measurement on an individual animal, but having also many animals
in the study, and animals might come from different farms, that lies in different
regions within different countries. This calls for so-called hierarchical models,
multi-level models, variance components models or models, where both treat-
ment factors and such hierarchical random effects are present – the so-called
mixed models.

All of this and many other good things can be learned in statistics courses build-
ing further on the methods presented in this material!
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Glossaries

Block [Blok] The block name comes from the historical background of agricul-
tural field trials, where a block would be an actual piece of land within
which all treatments are applied 26, 27

P-value [p-værdi (for faktisk udfald af en teststørrelse)] 15, 31, 33
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Acronyms

ANOVA Analysis of Variance 1, 2, 6, 11, 12, 17, 18, 21, 24, 26, 28, 29, 32, 34, 36,
39, Glossary: Analysis of Variance

cdf cumulated distribution function Glossary: cumulated distribution function

CI confidence interval 12, 14, 16, 23, 24, 32, Glossary: confidence interval

CLT Central Limit Theorem Glossary: Central Limit Theorem

IQR Inter Quartile Range Glossary: Inter Quartile Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function
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