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9.1 Matrix formulation of summary statistics

In this chapter we will focus on second order moment representations, i.e. av-
erage/mean, variance/sample variance, and covariances/sample covariances.
The choice of second order moment representation is closely related to the mul-
tivariate normal (Gaussian) distribution, which is characterized by the second
order moment representation. We start by a small example.

Example 9.1 Height and weight

The scatter-plot below show height and weight (gray dots) of around 600 males in
the age 25-50 years. From the plot it is clear that there is some correlation between
the two variables, and hence that a good description of data include the correlation
between the two.

The contour lines are related to a multivariate normal distribution, that is estimated
to describe the data as good a possible, and define prediction regions. The red ar-
rows are eigen-vectors of the variance-covariance matrix.

In this case observations are two dimensional and one observation consist of the
observed height and the observed weight.

Error in library(ellipse): there is no package called ’ellipse’

Assume that we have associated observations of different variables (e.g. height
and weight of a number of persons). In this section we will be interested in
average, observed variance, observed covariance and observed correlation. The
k-dimensional observations will be denoted by

yi =

y1,i
...

yk,i

 , (9-1)

if the are N observation then the average vector is given by

ȳ =

ȳ1
...

ȳk

 =
1
N

N

∑
i=1

yi, (9-2)

recall that the observed covariance between two vector of observations, yl,· and
ym,·, is given by

slm =
1

N − 1

N

∑
i=1

(yli − ȳl)(ymi − ȳm), (9-3)
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which can be collected in an observed variance-covariance matrix by

S =
1

N − 1

N

∑
i=1

(yi − ȳ)(yi − ȳ)T. (9-4)

The matrix S is often, in particular when reported, decomposed into standard
deviation and correlations

S = σ̂Rσ̂, (9-5)

where σ̂ is a diagonal matrix with the observed standard deviation in the diag-
onal (i.e σ̂ii =

√
Sii and σ̂ij = 0 for i ̸= j), and R is the collection of all pairwise

correlations. As a direct consequence we can write the correlation matrix as

R = σ̂−1Sσ̂−1. (9-6)

The main advantage of (9-6) is that the correlation coefficients are easy to inter-
pret, while covariances are not.

Example 9.2 Height and weight cont.

For the data presented in Example 9.1 the second order moment representation can
be calculated as

S = dat.cov()
mu = dat.mean()
print(mu)

height 180.774671
weight 78.351891
dtype: float64

print(S)

height weight
height 53.304992 50.00331
weight 50.003310 108.62449

hence average height is about 180 cm and the average weight is about 78 kg. Further
the variances and covariances is also calculated and the shape of the ellipsoids in
Example 9.1 is described by those. As noted in the text it is usual practice to report
standard deviations and correlation, as presented below, rather than the variance-
covariance matrix.
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R = dat.corr()
sig_hat = np.sqrt(dat.var())
print(sig_hat)

height 7.301027
weight 10.422307
dtype: float64

print(R)

height weight
height 1.000000 0.657129
weight 0.657129 1.000000

hence the standard deviations are 7 cm and 10 kg, respectively, and the correlation
is about 0.66.

9.2 Preliminaries from linear algebra

This chapter rely on a many results from linear algebra, and we state a some
results that are important for the further development. Some of these are stated
without proof.

Lemma 9.3 Eigenvalue decomposition of symmmetric matrices

For a quadratic matrix A ∈ Rn×n, with n linearly independent eigenvectors,
the eigenvalue decomposition can be written as

A = VΛV−1, (9-7)

where V is the eigen-vectors and Λ is a diagonal matrix with the eigenvalues
along the diagonal.
If A ∈ Rn×n is a symmetric matrix then the eigenvalue decomposition can
be written as

A = VΛV T, (9-8)

i.e. V−1 = V T. Further the rank of A is equal to the number a non-zero
eigenvalues.
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Example 9.4

In Example 9.1 we plotted the observed data along with some ellipsoids (we will get
back to those). In the same plot there are two red arrows, these represent the eigen-
vectors with length proportional to the eigen values of the variance-covariance ma-
trix of the observed data. In Python the eigenvalues and eigen vector can be calcu-
lated by

Eigen = eig(S)
Eigvals, Eigvectors = eig(S)
print(Eigvals)

[ 23.821 138.108]

print(Eigvectors)

[[-0.861 -0.508]
[ 0.508 -0.861]]

Hence the arrows both start in the observed average, ȳ, and extend to

ȳ + k
√

23.8 ·
[−0.86

0.51

]
; and ȳ + k

√
138.1 ·

[
0.51
0.86

]
, (9-9)

as stated above we will get back to the exact choice of k, but it is related to a predic-
tion interval/region for the observations.

We state the following permutation result for permutation in traces

Lemma 9.5 Permutation in traces

For matrices A, B and C such that that the products ABC, BCA and CAB
can be formed then

Trace(ABC) = Trace(BCA) = Trace(CAB). (9-10)

We will sometimes need to update the matrix inverses, and the following lemma
and corollary is useful for that.
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Lemma 9.6 Rank-1 update of matrix inverse

Let X ∈ Rn×p be a matrix such that A = (XTX)−1 is well defined (i.e. XTX
have full rank) and further let X̃ = [X v], with v ∈ Rn a vector, then

(X̃TX̃)−1 =

[
A + AXTvvT X A

vTv−vT X AXTv
−AXTv

vTv−vT X AXTv
−vT X A

vTv−vT X AXTv
1

vTv−vT X AXTv

]
(9-11)

We will use matrices of the form X(XTX)−1XT (which, as we will show, is an
othogonal projection matrix) often, and the following corollary to Lemma 9.5
apply

Corollary 9.7 Rank-1 update of projection matrix

Let X and X̃ be as in Lemma 9.6, define H = X(XTX)−1XT and H̃ =
X̃(X̃TX̃)−1X̃T, then

H̃ =H +
1
k

(
HvvT H − vvT H − HvvT + vvT

)
=H +

1
k
(I − H) vvT (I − H)

(9-12)

with k = vTv − vTX AXTv = vT (I − H) v.

Proof

From Lemma 9.6, we have

(X̃TX̃)−1 =

[
A + AXTvvT X A

vTv−vT X AXTv
−AXTv

vTv−vT X AXTv
−vT X A

vTv−vT X AXTv
1

vTv−vT X AXTv

]
(9-13)

and hence

H̃ =
[
X v

] [A + AXTvvT X A
vTv−vT Hv

−AXTv
vTv−vT Hv

−vT X A
vTv−vT Hv

1
vTv−vT Hv

] [
XT

vT

]
=

[
X A + HvvT X A

vT(I−H)v − vvT X A
vT(I−H)v

−Hv
vT(I−H)v + v

vT(I−H)v

] [XT

vT

]
=H +

HvvT H
vT(I − H)v

− vvT H
vT(I − H)v

− HvvT

vT(I − H)v
+

vvT

vT(I − H)v

(9-14)

which is the stated result.
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■

9.3 Multivariate distributions

We will focus the multivariate normal distribution, but start by some general
definitions and results, related to multivariate distributions.

Definition 9.8 Multivariate probability density functions

A multivariate probability density function for the random variable Y ∈ Rn,
is a function from Rn into R0,

f (y) = f (y1, y2, ..., yn) ≥ 0, (9-15)

such that∫
f (y)dy =

∫ ∫
· · ·

∫
f (y1, y2, ..., yn)dy1dy2 · · · dyn = 1, (9-16)

further the marginal distribution for Yi is given by

fYi(yi) =
∫ ∫

· · ·
∫

f (y1, y2, ..., yn)dy1 · · · dyi−1dyi+1 · · · dyn. (9-17)

If a random variable Y = [YT
1 , YT

2 ]
T have the joint density fY(y), then the

marginal density of Y1 is

fY1(y1) =
∫

fY(y)dy2. (9-18)

The density function is the fundamental property of a random variable that
describe everything about the random variable, here we are mostly interested
in the second order moment representation (mean, variance and covariance).
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Definition 9.9 Second order moment representation

If a random vector Y ∈ Rn have the probability density function fY then the
mean and variance of Yi is

E[Yi] =µi =
∫

yi fYi(yi)dyi

V[Yi] =σii =
∫
(yi − µi)

2 fYi(yi)dyi,
(9-19)

and the covariances between Yi and Yj is

Cov[Yi, Yj] = σij =
∫
(yi − µi)(yj − µj) fYi,Yj(yi, yj)dyidyj. (9-20)

Further the mean value vector of a random vector Y = [Y1, ..., Yn]T is defined
by

µ = E[Y ] =

E[Y1]
...

E[Yn]

 , (9-21)

and the variance-covariance matrix is

Σ = V[Y ], (9-22)

where the elements of Σ are Σij = Cov[Yi, Yj]. µ and Σ is referred to as the
second order moment representation.

The covariance matrix between two random vectors Y1 and Y2 (not necessarily
of the same dimension) is

Σ12 = Cov[Y1, Y2], (9-23)

meaning the Σ12
ij = Cov[Y1,i, Y2,j]. Now we can write the variance-covariance

matrix of the random vector [YT
1 , YT

2 ]
T as

V
[

Y1
Y2

]
=

[
Σ11 Σ12

Σ21 Σ22

]
, (9-24)

where (of course) Σ12 =
(
Σ21)T. We are now ready for the calculation rules for

random vectors.
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Theorem 9.10 Covariance calculation rules

Let the variance-covariance matrix of [YT
1 , YT

2 ]
T be as in (9-24) and let b be a

vector, and A and B be matrices of appropriate dimensions, then

E[AY1 + b] =AE[Y1] + b (9-25)

Cov[AY1, BY2] =ACov[Y1, Y2]BT = AΣ12BT (9-26)

and as a special case

V[AY1] = AΣ11AT. (9-27)

Let A and B be such that AY1 + BY2 can be formed, then

V[AY1 + BY2] =AΣ11AT + BΣ22BT + AΣ12BT + BΣ21AT. (9-28)

In addition to the second order moment representation, independence is a very
important concept in statistics, the formal definition is

Definition 9.11 Independence of random vectors

Let fY be the joint distribution of the random vector Y = [YT
1 , YT

2 ]
T, then Y1,

and Y2 are independent if

fY(y) = fY1(y1) fY2(y2). (9-29)

The definition imply that if Y1 and Y2 are independent then Cov[Y1, Y2] = 0.
In general the opposite is not true (i.e. no correlation does not imply indepen-
dence).

Section 9.3.1 below consider the matrix formulation of error propagation. It is
not used in the further development but included for completeness of matrix
formulations.
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9.3.1 Error propagation

We consider a random vector Y ∈ Rn with

E[Y ] = µ

V[Y ] = Σ,
(9-30)

now consider an (possibly nonlinear) function f (Y) ∈ Rm, the function f can
be approximated around any point y0 by the Taylor approximation

f (Y) = f (y0) + J f (y0)(Y − y0) + “HOT′′, (9-31)

where ′′HOT′′ is short for Higher Order Terms. Now if we choose y0 = µ, we
can write

f (Y) ≈ f (µ) + J f (µ)(Y − µ), (9-32)

notice here that µ and f (µ) are non random vectors, and the Jacobian, J f (µ), is
a non-random matrix, and therefore we can directly write

E[ f (Y)] ≈ f (µ) + J f (µ)E[(Y − µ)]

= f (µ),
(9-33)

and

V[ f (Y)] ≈J f (µ)V[(Y − µ)]JT
f (µ)

=J f (µ)ΣJ f (µ)
T.

(9-34)

Example 9.12 Body Mass Index

Body mass index (BMI) is often used as an indicator of the health of a person, BMI
is defined as

BMI =
w
h2

m
, (9-35)

where w is the weight [kg] and hm [m] is the height, in our case we measure height
in cm and therefore we get

BMI =
w

h2
cm

104, (9-36)

and the Jacobian is

JBMI(h, w) =
[
−2 w

h3
1
h2

]T · 104, (9-37)

based on the data from Example 9.1 we can approximate the variance of BMI (for
the considered population) by
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mu

height 180.774671
weight 78.351891
dtype: float64

h = mu["height"]
w = mu["weight"]
J = np.array([-2 * w / h**3 * 10000, 1 / h**2 * 10000])
J @ dat.cov() @ J.T

5.804464687904143

hence the variance is approximated by 5.8 kg2/m4 or a standard deviation of 2.4
kg/m2.

9.3.2 The multivariate Gaussian distribution

In this section we cover some important results for the multivariate normal dis-
tribution and the relation to the χ2-distribution. These are important for the
development of statistical tests related to the general linear model (LM1), which
is the main topic of the chapter.

A common definition of the multivariate normal distribution is that the pdf of
the random variable Y ∈ Rn is

fY(y) =
1

(2π)n/2
√
|Σ|

e−
1
2 (y−µ)TΣ−1(y−µ), (9-38)

and the parameters (µ and Σ) are the second order moment representation, i.e.

E[Y ] =µ

V[Y ] =Σ,
(9-39)

and we write

Y ∼ Nn(µ, Σ). (9-40)

We will sometimes omit the subscript n if it is clear from context (or if it is not
important).

1We use the abbreviation LM rather than GLM as GLM is usually used for the more general
generalized linear model.
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Example 9.13

The ellipsoids in the figure in Example 9.1 are level curves in a 2-dimensional nor-
mal with mean value equal the observed average and variance-covariance equal the
observed variance-covariance matrix (see Example 9.2).

Theorem 9.14 Independence of normal random variables

If Y = [YT
1 , YT

2 ]
T ∼ N(µ, Σ), and

Cov[Y1, Y2] = 0, (9-41)

then Y1 and Y2 are independent.

Proof

See Exercise 1.

■

Note that the assumption of the joint distribution is important in Theorem 9.14,
i.e. it is not enough that the marginal distribution of the random variables in
the vector are normal. The next example illustrate the point.

Example 9.15

Let Y1 ∼ N(0, 1) and let P(X = −1) = P(X = 1) = 1
2 independent of Y1, and define

Y2 = XY1, then the marginal distribution of Y2 is the standard normal and

Cov[Y1, Y2] =Cov[Y1, XY1] = E[Y1XY1] = E[X]E[Y2
1 ]

=E[X]V[Y1] = E[X] = 0,
(9-42)

hence no correlation, but clearly the variables are not independent, as knowledge of
Y1 limit the number of possible outcomes of Y2 to two possible values (Y1 or −Y1).
For a graphical simulation based analysis see Exercise 2.
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Theorem 9.16 Normalization of normal random vectors

If Y ∼ N(µ, Σ), with the pdf of Y as defined in (9-38) (implying that Σ is
positive definite), then

Z = Σ− 1
2 (Y − µ) ∼ N(0, I) (9-43)

with Σ
1
2 = VΛ

1
2 (implying that Σ

1
2 Σ

T
2 = Σ), where Λ is a diagonal matrix

with the eigenvalues of Σ in the diagonal and V is the corresponding eigen-
vectors.

Proof

Σ is a real symmetric matrix and hence it can be written as (see Lemma 9.3)

Σ = VΛV T, (9-44)

and Σ− 1
2 = Λ− 1

2 V−1, also V is an orthogonal basis (hence V−1 = V T), and hence

V[Σ− 1
2 Y ] =Σ− 1

2 V[Y ]Σ− T
2

=Λ− 1
2 V−1VΛV TV−TΛ− 1

2

=Λ− 1
2 V TVΛV TVΛ− 1

2

=Λ− 1
2 ΛΛ− 1

2

=I,

(9-45)

and since E[Y ] = µ the proof is completed.

■

The definition (9-38) clearly require Σ to be inevitable, and a more general defi-
nition, which we will need in the following, is
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Definition 9.17 Multivariate normal distribution

Let Zi, i = 1, ..., n, be iid. standard normal random variables, s.t. (Z =
[Z1, ..., Zn]T)

Z ∼ N(0, I). (9-46)

Then the random vector Y = AZ + b, with A ∈ Rm×n and b ∈ Rm, follow
an m-dimensional multivariate normal distribution with

E[Y ] =b

V[Y ] =AAT,
(9-47)

this holds also when AAT is not positive definite.

The definition imply that any linear combination of a multivariate normal ran-
dom vector is also a multivariate normal random vector and further if the co-
variance between two elements of a multivariate normal vector is zero the they
are independent.

As an example suppose we have n iid. standard normal random variables (Zi)
and form the average of those (Z̄) and consider the difference between the av-
erages and the individual random variables (we denote these as residuals, r)

r =

Z1 − Z̄
...

Zn − Z̄

 = AZ; Z ∼ N(0, I), (9-48)

with

A =


1 − 1

n − 1
n · · · − 1

n

− 1
n 1 − 1

n
. . . ...

... . . . . . . − 1
n

− 1
n · · · − 1

n 1 − 1
n

 = I − 1
n

E. (9-49)

The matrix A is in Rn×n, but any column (or row) can be written as the (nega-
tive) sum of the remaining columns and therefore the rank of A is equal n − 1
(not n, see Exercise 3). Further in this special case, we have

AAT = A2 = A. (9-50)

For a proof of the claims in (9-50) see Exercise 3. We will come back to the
particular properties (9-50) of the matrix (9-49), but for now we can simply write

r ∼ N(0, A), (9-51)
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this imply that the pdf of r cannot be written explicitly (the inverse of A does
not exist), and further that the covariance between ri and rj is not 0 (implying
that they are not independent).

We can also show that r and Z̄ are independent, to that end consider[
r
Z̄

]
=

[
A

1
n 1T

]
Z, (9-52)

hence the vector [rT, Z̄]T follow a multivariate normal distribution and if the
covariance between the two is zero then r and Z̄ are independent,

Cov[r, Z̄] =Cov
[

AZ,
1
n

1TZ
]

=
1
n

ACov [Z, Z] 1
(9-53)

since V[Z] = I it reduce to

Cov[r, Z̄] =
1
n

A1, (9-54)

and since the row-sums of A is zero (see Exercise 3) we get

Cov[r, Z̄] =0, (9-55)

hence r and Z̄ are independent. For the development of statistical test we need
to derive the relation between the multivariate normal and the χ2-distribution,
this is the subject of the next section.

9.4 The multivariate normal and the χ2-distribution

From the definition of the χ2-distribution (see Theorem 2.78) we know that, if
Z ∼ Nn(0, I) then

ZTZ ∼ χ2(n). (9-56)

A simple consequence of Theorem 9.16 is

Corollary 9.18

With Y ∈ Rn as in Theorem 9.16 then

(Y − µ)TΣ−1(Y − µ) ∼ χ2(n). (9-57)
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Proof

See Exercise 4.

■

Corollary 9.18 imply that if Y ∼ Nn(µ, Σ) then

P((Y − µ)TΣ−1(Y − µ) ≤ χ2
1−α) = 1 − α, (9-58)

and hence level curves of the pdf describe probability regions that can be deter-
mined from the χ2-distribution.

Example 9.19

In Example 9.1 we saw level curves of the Gaussian pdf, these are described by
curves where

(Y − µ)TΣ−1(Y − µ) = χ2
1−α (9-59)

with µ equal the observed average of height and weight, and Σ equal the observed
variance-covariance (see Example 9.4). Also the values of α is set at 0.5, 0.05 and
0.005 respectively for the three curves. Hence the length of the red arrow in the plot
of Example 9.1 is

χ2
0.95 · 23.8; and χ2

0.95 · 138.1 (9-60)

with χ2
0.95 a quantile of the χ2-distribution with 2 degrees of freedom, i.e. (referring

to Example 9.4) k =
√

χ2
0.95.

Using the from given in (9-48), we can write the quadratic form as (using r =
Z − 1Z̄)

ZTZ =(r + 1Z̄)T(r + 1Z̄)

=rTr + (Z − 1Z̄)T1Z̄ + 1TZ̄(Z − 1Z̄) + Z̄1T1Z̄

=rTr + (nZ̄ − nZ̄)Z̄ + Z̄(nZ̄ − nZ̄) + nZ̄2

=rTr + nZ̄2

(9-61)

since nZ̄2 ∼ χ2(1), and Z̄ and r are independent then we must have

rTr ∼ χ2(n − 1). (9-62)
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Example 9.20

Assume that Y ∼ Nn(1µ, σ2I), this is equivalent to

Y = 1µ + ϵ; ϵ ∼ Nn(0, σ2I), (9-63)

and the “residuals” can be written as

r =Y − 1Ȳ

=1µ + ϵ − 1µ − 1ϵ̄

=ϵ − 1ϵ̄,

(9-64)

hence not depending on µ, and in light of the discussion above we also have that
1

σ2 rTr ∼ χ2(n − 1), and further if µ = 0 (the null-hypothesis) then Ȳ2/(σ2/n) ∼
χ2(1), and hence if µ = 0 then

Fobs =
Ȳ2

σ2/n
1

σ2 rTr/(n − 1)
=

nȲ2

rTr/(n − 1)
∼ F(1, n − 1), (9-65)

Fobs is a test statistic and conclusions about µ can be based on critical values or p-
values.

The derivations above is a special case of Cochran’s theorem, which we will
state below, but first we need the concept of orthogonal projection matrices, as
stated in the next definition.

Definition 9.21 Orthogonal projections

A matrix P is an orthogonal projection matrix if and only if

• P is symmetric, i.e. P = PT

• P is idempotent, i.e. P2 = P.

If P is a projection matrix then so is I − P, this is easily shown by

(I − P)T =IT − PT = I − P

(I − P)2 =I + P2 − P − P = I − P.
(9-66)

Using the results above it is easy to show that the matrix A in (9-49) is an or-
thogonal projection matrix (see Exercise 5).
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Lemma 9.22 Properties of orthogonal projection matrices

If P is an orthogonal projection matrix, then

1. The eigenvalues λi of P are either 0 or 1, and Rank(P) = ∑i λi.

2. Rank(P) = Trace(P).

Proof

Let Λ and V a diagonal matrix with the eigen-values along the diagonal, and the
collection of eigen-vectors. Then 1) P2 = P and hence VΛV T = VΛV TVΛV T =
VΛ2V T or Λ = Λ2 implying that λi = λ2

i which can only happen if λi = 0 or λi = 1
and hence the number of non-zero eigenvalues (which is the rank) is ∑i λi. 2) see
Exercise 6.

■

We again turn to the simple example (9-48). We have already seen that A is a
projection matrix and that Rank(A) is n − 1, using the results in Lemma 9.22 we
also get

Trace(A) =
n

∑
i=1

(
1 − 1

n

)
= n − 1. (9-67)

The main result for construction test statistics is Cochran’s theorem as given
below.

Theorem 9.23 Cochran’s theorem

Let Y ∼ Nn(0, σ2I), and let Hi be orthogonal projection matrices such that

1
σ2 YTY =

1
σ2

K

∑
i=1

YT HiY (9-68)

i.e. ∑K
i=1 Hi = In, with Rank(Hi) = pi, and ∑i pi = n then

1. 1
σ2 YT HiY ∼ χ2(pi)

2. YT HiY and YT HjY are independent for i ̸= j.
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As we will see in later sections Cochran’s theorem is useful for constructing test
statistics and determine their distributions. We prove the theorem in Section
9.4.1 below.

The independence condition in Theorem 9.23 is equivalent to

Cov[YT Hi, HjY ] = 0. (9-69)

In the simple example in eps. (9-48) we have

Z = AZ + (I − A)Z = H1Z + H2Z (9-70)

and it is easy to show that Cov[H1Z, H2Z] = 0 (see Exercise 9).

We can also use Cochran’s theorem to find the distribution of rTr, the following
is obviously true

Z =AZ + (I − A)Z
=r + (I − A)Z,

(9-71)

now Rank(I − A) = n − 1, and hence by Cochran’s theorem

rTr =ZT AT AZ

=ZT AZ ∼ χ2(n − 1).
(9-72)

This conclude the fundamental tools we need for the development of test statis-
tics in the general linear model. The next section present the proof of Cochran’s
Theorem.

9.4.1 Proof of Cochran’s Theorem*

Note that 1
σY ∼ N(0, I) and hence Yi and Yj are independent for all i ̸= j.

Therefore

1
σ2 YYT =

1
σ2

n

∑
i=1

Y2
i ∼ χ2(n), (9-73)

and further for any sub-sum

1
σ2

p

∑
i=1

Y2
i ∼ χ2(p). (9-74)
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Now consider the case K = 2,

1
σ2 YTY =

1
σ2 YT H1Y +

1
σ2 YT H2Y , (9-75)

and let Vi be the eigen-vectors corresponding to Hi, and Λi diagonal matri-
ces with the corresponding eigenvalues, and consider the linear transformation
Z = V1Y , then

ZTZ = YTV T
1 V1Y = YTY , (9-76)

and insert in (9-75)

1
σ2 YTY =

1
σ2 ZTZ

=
1
σ2 YTV T

1 H1V1Y +
1
σ2 YTV T

1 H2V1Y

=
1
σ2 YTΛ1Y +

1
σ2 YTV T

1 H2V1Y ,

(9-77)

without loss of generality we can assume that the first p1 diagonal elements of
Λ is 1 and the remaining are zero and hence

YTΛ1Y =
p1

∑
i=1

Y2
i (9-78)

and therefore

YTV T
1 H2V1Y =

n

∑
i=p1+1

Y2
i . (9-79)

The two terms are independent since they depend on different Y’s, and it fol-
lows that

1
σ2 YTΛ1Y ∼χ2(p1)

1
σ2 YTV T

1 H2V1Y ∼χ2(n − p1).
(9-80)

This conclude the proof of the case K = 2. For K > 2 we first consider K = 3,

1
σ2 YTY =

1
σ2 YT H1Y +

1
σ2 YT H2Y +

1
σ2 YT H3Y

=
1
σ2 YT H1Y +

1
σ2 YT HRY

=
1
σ2 YTΛ1Y +

1
σ2 YT(I − Λ1)Y

(9-81)
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with HR = H2 + H3, now consider the splitting Y = [YT
1 YT

R ]
T. Note that

YR ∼ Nn−p1(0, σ2I) and YT
R YR = YT(I − Λ1)Y following the arguments for the

case K = 2 we have

YT
R YR =YT(I − Λ1)Y

=YT(I − Λ1)H2(I − Λ1)Y + YT(I − Λ1)H3(I − Λ1)Y

=YT
R H̃2YR + YT

R H̃3YR,

(9-82)

and

1
σ2 YT(I − Λ1)Y =

1
σ2 YT(I − Λ1)Λ2Y +

1
σ2 YT(I − Λ1)(I − Λ2)Y

=
1
σ2 YTΛ2Y +

1
σ2 YT(I − Λ1 − Λ2)Y

(9-83)

where the first term on the rhs follow a χ2(p2)-distribution and the second term
follow a χ2(n− p1 − p2)-distribution, and hence the quadratic form can be writ-
ten as

1
σ2 YTY =

1
σ2 YT H1Y +

1
σ2 YT H2Y +

1
σ2 YT H3Y

=
1
σ2 YTΛ1Y +

1
σ2 YTΛ2Y +

1
σ2 YT(I − Λ1 − Λ2)Y .

(9-84)

Cases where K > 3 follow by induction.

9.5 The general linear model

The models covered in Chapter 3, 5, 6, and 8 can all be written as

Y = Xβ + ε, ε ∼ N(0, σ2I). (9-85)

Any model that can be written in the form (9-85) is called a general linear model.
Y is the outcome of interest, the known matrix X is called the design matrix, β is
the mean value parameters that we should estimate based on the design matrix
and the outcomes, ϵ is the residual errors, with variance σ2, and further we
assume that all residuals are iid.

In this section we will cover the general linear model in very general terms,
and in later sections we will present different examples (including the model
covered in Chapters 3, 5, 6, and 8). As we do not know the mean parameter we
will have to rely on estimates/estimators of them, i.e. we observe

Y =X β̂ + r, r ∼ N(0, Σ)

=Ŷ + r, r ∼ N(0, Σ),
(9-86)



Chapter 9 9.5 THE GENERAL LINEAR MODEL 21

where r is the observed residuals (i.e. the realized version of ϵ), Σ depend on
design matrix (X) and σ2.

Now define the residual sum of squares as

RSS(β) = rTr = (Y − Xβ)T(Y − Xβ), (9-87)

from the perspective of RSS the best estimator is

β̂ = argminβRSS(β), (9-88)

the result of this minimization problem is given in the next theorem:

Theorem 9.24 Least square estimator

Assuming that XTX is invertible and that Y ∼ N(Xβ, σ2I), then the least
square estimator (β̂) of the mean value parameters (β) in the general linear
model are given by

β̂ = (XTX)−1XTY , (9-89)

further β̂ is a central estimator (E[β̂] = β) and the variance-covariance ma-
trix of the estimator is

V[β̂] = σ2(XTX)−1. (9-90)

Throughout this document we will assume that XTX is invertible, and if this is
not the case then we will discuss the action needed to me make XTX invertible
(basically removing columns in the design matrix). Cases where one for some
reason insist (which may be relevant) on a design matrix where XTX is not
invertible will not be discussed here.

We give the proof of Theorem 9.24 below

Proof

When we want to find the minimum of RSS, we need to differentiate RSS with re-
spect to the parameters (β). To that end we write RSS as a quadratic form

RSS(β) = YTY + βTXTXβ − βTXTY − YTXβ, (9-91)

since YTXβ is a scalar we have YTXβ = (YTXβ)T = βTXTY and hence

RSS(β) = YTY + βTXTXβ − 2βTXTY , (9-92)
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and find the derivative wrt. β can be found as

∇RSS(β) =
∂RSS

∂β
= (XTX + (XTX)T)β − 2XTY

= 2XTXβ − 2XTY ,
(9-93)

setting ∇RSS(β) = 0 and solving for β gives

β̂ = (XTX)−1XTY , (9-94)

taking the expectation of β̂ we get

E[β̂] = E[(XTX)−1XTY ]

= (XTX)−1XT E[Xβ + ε]

= (XTX)−1XTXβ

= β.

(9-95)

Hence β̂ is a central estimator for β. The variance of the parameter estimator is given
by

V[β̂] = V[(XTX)−1XTY ]

= (XTX)−1XT V[Xβ + ε]X(XTX)−T

= (XTX)−1XT(V[Xβ] + V[ε])X(XTX)−T

= (XTX)−1XTσ2IX(XTX)−T

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1.

(9-96)

■

For any reasonable design matrices this imply that V[β̂] → 0 as the number of
observation go to infinity, implying that the estimator is consistent.

Definition 9.25 Orthogonal parametrization

A parametrization is called orthogonal if (XTX)ij = 0 for i ̸= j.

An orthogonal parametrization imply that the covariance between parameters
is zero. We will see later on in this chapter that the same model can be parame-
terized in different, but equivalent ways, implying that different design matri-
ces may be associated with the same model. Orthogonal design is (given ev-
erything equal) preferable as changes in one parameter does not changes other
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parameters. Also one way of dealing with multicollinarity is orthogonalization
of the desing matrix.

9.5.1 Estimators or estimates

In the derivations above we have considered the observation as a random vari-
ables (and hence used Y), and in that setting β̂ is also a random variable. When
we have actual observation of the system we denote the observation by y (this
not a random vector) and then β̂ = (XTX)−1XTy is also a vector of actual num-
bers (not a random vector) that is refereed to as an estimate.

In the following we will need both interpretations of β̂, but it should be clear
from the context which we are referring to. In general we can say that what we
actually observe are estimates, but when constructing appropriate test statistic
we consider the estimator. For example the distribution used in the partial t-
test is derived using the estimator, β̂, while when we calculate the test statistic
in a specific problem (which is used for calculating a p-value or compared to a
critical value), we use the estimate β̂.

9.5.2 Geometric interpretation of the general linear model (LM)

The estimator/estimate β̂ define an orthogonal projection of the observations
into the space of fitted values, which is defined by the design matrix X. Using
the parameter estimate β̂ we can write the fitted values as

ŷ =X β̂

=X(XTX)−1XTY = Hy,
(9-97)

where the matrix H is defined by the design matrix 2. The observed residuals
can be written as

r = y − ŷ, (9-98)

in which case the residuals are observed numbers or we can write

r = Y − Ŷ , (9-99)

with Ŷ = HY , in which case r is a random vector, both Y and Ŷ follow a
multivariate normal distribution (we will get back to the mean and variance-
covariance of those). Many results apply regardless of the interpretation of r,

2H is often referred to as the “hat”-matrix, as it puts a hat on Y
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the exception is of course results related to resulting distributions, which only
apply for the random variable interpretation.

The matrix H = X(XTX)−1XT is an orthogonal projection matrix (see Defini-
tion 9.21) as

HT =(X(XTX)−1XT)T

=X(XTX)−1XT = H

H2 =X(XTX)−1XTX(XTX)−1XT

=X(XTX)−1XT = H.

(9-100)

The observed residuals of the model can be written as

r = Y − Ŷ = (I − H)Y , (9-101)

the matrix I − H is also an orthogonal projection matrix, and further the resid-
uals and the fitted values are orthogonal

rTŶ =YT(I − H)HY

= YT(H − H)Y = 0.
(9-102)

The dimension of the linear subspace defined by the column space of X ∈ Rn×p

is of course p and further the trace of H is equal p, as we can write (using
Theorem 9.5)

Trace(H) =Trace(X(XTX)−1XT)

=Trace((XTX)−1XTX)

=Trace(Ip) = p.

(9-103)

Hence the dimension of the linear subspace defined by the design matrix X is p
and further

Trace(I − H) = Trace(I)− Trace(H) = n − p. (9-104)

Two models (defined by their design matrices) are equivalent if the resulting
orthogonal projection matrices are equal, i.e. if

H1 = X1(XT
1 X1)

−1XT
1 = X2(XT

2 X2)
−1XT

2 = H2. (9-105)

Hence a model depend in the projection matrix not on the particular parametriza-
tion. We will see examples of this in the next section, where we formulate the
first statistical models/methods as LMs.
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In statistical models the projections are usually from high dimensional space (n
is usually way larger than 3), and hence difficult to illustrate graphically, the
following simple example can hopefully illustrate the projection principle in an
simple example.

Example 9.26 Items on a balance

Two items A and B are weighted on a balance, first separately then together, giving
the observations y1, y2, y3, and the model

Y1 =βA + ϵ1

Y2 =βB + ϵ2

Y3 =βA + βB + ϵ3

(9-106)

with ϵi ∼ N(0, σ2). βA is the weight of item A and βB is the weight of item B.

Or in matrix notation

Y =

1 0
0 1
1 1

 [
βA
βB

]
+ ϵ = Xβ + ϵ (9-107)

with ϵ ∼ N(0, σ2I). Hence

β̂ =(XTX)−1XTy =
1
3

[
2 −1 1
−1 2 1

]
y (9-108)

and

ŷ =X(XTX)−1XTy =
1
3

 2 −1 1
−1 2 1
1 1 2

 y = Hy (9-109)

The projection H defines a 2-dimensional surface in R3. In the plot below the “blue”
surface define the 2 dimensional surface into which any point is projected, the exact
location on the surface is determined by the actual observation, as illustrated in the
plot. Further the plot illustrate a norm interpretation of the projection.

To highlight the geometric interpretation the usual norm of the vectors are also in-
dicated in the plot.
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The example highlight the geometric interpretation of the projections, in the
example we have

• Norm of the observations

||y|| =
√

n

∑
i=1

y2
i =

√
yTy (9-110)

• Norm of fitted values

||ŷ|| =
√

n

∑
i=1

ŷ2
i =

√
yT Hy (9-111)

• Norm of residuals

||y − ŷ|| =
√

n

∑
i=1

(yi − ŷi)2 =
√

yT(I − H)y (9-112)

and further as ŷ and r = y − ŷ are orthogonal it follows (Pythagoras) that

||y||2 = ||ŷ||2 + ||y − ŷ||2 (9-113)
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intuitively we would argue that the data is well explained by the model if ||ŷ||2
is large compared to ||y − ŷ||2. When we develop tests in the following it is
based on ratios between squared norms of orthogonal projections.

9.6 One-sample t-test as a LM

The one-sample t-test can be written as a general linear model with X = 1, i.e.
a vector of ones, the orthogonal projection matrix is in this case given by

H =
1
n

E, (9-114)

where Eij = 1 for all (i, j) and Trace(H) = 1 hence the dimension of the model
is 1. The model can be written in the form Y ∼ N(1µ, σ2I), and then following
corollary to Cochran’s theorem apply

Corollary 9.27 One-sample t-test as a projection

If Y ∼ N(1µ, σ2I) then the partitioning of variation can be written as

YTY = YT HY + YT(I − H)Y , (9-115)

and, regardless of the value of µ, then

1
σ2 YT(I − H)Y ∼χ2(n − 1). (9-116)

further if µ = 0 then

1
σ2 YT HY ∼χ2(1). (9-117)

Implying that if µ = 0 then

F =
1

σ2 YT HY/1
1

σ2 YT(I − H)Y/(n − 1)
=

YT HY
YT(I − H)Y/(n − 1)

∼ F(1, n − 1).

(9-118)

which can be used to test the null-hypothesis µ = 0.
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Proof

First note that 1
σ2 (Y − 1µ) ∼ N(0, I) (no matter the value of µ), and hence

1
σ2 (Y − 1µ)T(Y − 1µ) =

1
σ2 (Y − 1µ)T H(Y − 1µ) +

1
σ2 (Y − 1µ)T(I − H)(Y − 1µ),

and in light of Cochran’s Theorem we have that

1
σ2 (Y

T − 1µ)H(Y − 1µ) ∼χ2(1)

1
σ2 (Y − 1µ)T(I − H)(Y − 1µ) ∼χ2(n − 1).

(9-119)

now consider the second term, the claim is that

(Y − 1µ)T(I − H)(Y − 1µ) = YT(I − H)Y (9-120)

for any choice of µ ∈ R,

(Y − 1µ)T(I − H)(Y − 1µ) =YT(I − H)Y − YT(I − H)1µ

−µ1T(I − H)Y + µ1T(I − H)1µ
(9-121)

now with H = 1(1T1)−11T we have 1T H = 1T1(1T1)−11T = 1T, and of course also
H1 = 1, and hence

1
σ2 (Y − 1µ)T(I − H)(Y − 1µ) =

1
σ2 YT(I − H)Y . (9-122)

Finally, it is clear that if µ = 0 then (YT − 1µ)H(Y − 1µ) = YT HY . And the proof is
completed by comparing to definition of the F-distribution (see Theorem 2.96)

■

In Chapter 3 we saw that the test statistics should be compared to a t-distribution
with n − 1 degrees of freedom. If t ∼ t(n − 1) then t2 ∼ F(1, n − 1) and hence
the results are equivalent.

In the construction above 1
σ2 YT HY ∼ χ2(1) is valid as long as the null-hypothesis

and the model assumption is correct, while 1
σ2 YT(I − H)Y ∼ χ2(n − 1) holds as

long as the model assumption are correct and a central estimator for σ2 can be
found by considering the expectation

E
[

1
σ2 YT(I − H)Y

]
= (n − 1) (9-123)

or
1

(n − 1)
E
[
YT(I − H)Y

]
= σ2 (9-124)
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and a central estimator for σ2 is

σ̂2 =
1

n − 1
YT(I − H)Y =

1
n − 1

n

∑
i=1

(Yi − Ȳ)2, (9-125)

hence the usual and well known variance estimator.

9.6.1 Assumptions and how to check them

The assumption in the general linear model is that ϵ ∼ N(0, σ2I), i.e.

1. ϵi is normal

2. V[ϵi] is constant (i.e. does not depend on i)

3. Cor[ϵi, ϵj] = 0 for all (i, j), implying independence

we do not actually observe ϵi but rather we observe

r = (I − H)Y ∼ N(0, σ2(I − H)) (9-126)

and conclusions on the residuals will be based on ri rather than ϵi. For the sim-
ple case we consider in this section the first two assumptions apply also to ri as
ri ∼ N(0, σ2(1 − hii)) and hii =

1
n , is independent of i (note this does not apply

to the general case). Also it is clear that strictly speaking the third assumption
is not fulfilled for the observed residuals as Cor[ri, rj] = − 1

n−1 (see Exercise
7), however the independence assumption is in general hard (or impossible) to
check, we treat will an exception below.

9.6.2 Checking lag-1 autocorrelation

A notable case where independence can be checked is when the observations
are taken with a clear ordering (typically in time), in this case the correlation
between residuals should be checked. There is a extended theory on models
that model correlation structures in time (time series analysis), which we will
not treat here. We will however stress that the independence assumption should
be checked for time series data, a simple check is to calculate the lag 1 auto-
correlation (to stress the time dependence we have replaced i by t)

ρt(1) =
Cov[ϵt, ϵt+1]√
V[ϵt]V[ϵt+1]

, (9-127)
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assuming the correlation and variance in constant (independent of t), we can
write

ρ(1) =
Cov[ϵt, ϵt+1]

V[ϵt]
, (9-128)

and again since we only observe rt we will have to base the inference on rt, i.e.
the estimator (note that r̄ = 0)

ρ̂(1) =
∑n−1

t=1 rtrt+1

∑n
t=1 r2

t
, . (9-129)

We will not go in details of this estimator, just mention that under the hypoth-
esis that Cov[ϵt, ϵt+1] = 0 then asymptotically (i.e n large), ρ̂(1) ∼ N(0, 1/n)
(see Exercise 8). And hence the lag 1 auto-correlation can be compared to that
distribution, in practice this imply that we test the hypothesis

H0 : ρ(1) = 0 (9-130)

by comparing the estimated lag 1 auto correlation (ρ̂(1)) to a quantile (usually
the 0.975 quantile) of normal distribution with mean 0 and standard deviation
1/

√
n.

9.7 Encoding

A LM is invariant to linear transformations of the design matrix, more specifi-
cally if

X2 = X1T (9-131)

such that T−1 exist then

H2 =X2(XT
2 X2)

−1XT
2

=X1T(TTXT
1 X1T)−1TTXT

1

=X1TT−1(XT
1 X1)

−1T−TTTXT
1

=X1(XT
1 X1)

−1XT
1 = H1.

(9-132)

Hence the two model defined by X1 and X2 are equivalent and we refer to dif-
ferent parametrizations (defined by T) as encoding.
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Example 9.28

Say we want to estimate the average height of males (25-50 years) based the data-set
presented in Example 9.1. We can do that by considering the model

Y = Xµ + ϵ; ϵ ∼ Nn(0, σ2I), (9-133)

with X = 1, the unit of µ will be the same as data (here cm). The projection matrix
is given by

H =
1
n

11T. (9-134)

Now let’s say that we insist on having the parameter (µ) given in meters (µm =

µcm/100) we can write the model as

Y =Xµm100 + ϵ

=Xmµm + ϵ; ϵ ∼ Nn(0, σ2I),
(9-135)

with Xm = 100 · 1 and in this case we get

Hm = Xm(XT
mXm)

−1XT
m =

1002

n1002 11T =
1
n

11T = Hcm. (9-136)

9.8 Two sample t-test as a LM

The two sample t-test (assuming equal variance in the two groups) can be de-
fined by the design matrix

X =



1 0
...

...
1 0
0 1
...

...
0 1


=

[
1n1 0n1

0n2 1n2

]
, (9-137)

in which case β = [µ1, µ2]
T. A more common parametrization of the design

matrix is

X2 =

[
1n1 0n1

1n2 1n2

]
, (9-138)

in which case β = [µ1, µ2 − µ1]
T. The two models are equivalent since

X
[

1 0
1 1

]
= XT = X2. (9-139)
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The usual null hypothesis (µ1 = µ2 = µ) have the design matrix

X0 = 1. (9-140)

The main result of this section is collected in the next corollary.

Corollary 9.29 Two-sample t-test as a projection

If Y ∼ N(Xβ, σ2I), with X as in (9-137) (or any other equivalent
parametrization e.g. (9-138)) then the orthogonal partitioning of variation
can be written as

YTY = YT H0Y + YT(H1 − H0)Y + YT(I − H1)Y , (9-141)

where H1 is based on (9-137) and H0 is based on (9-140). Regardless of the
value of β, then

1
σ2 YT(I − H1)Y ∼χ2(n − 2) (9-142)

further if µ1 = µ2 (corresponding to β2 = 0 in (9-138)) then

1
σ2 YT(H1 − H0)Y ∼χ2(1). (9-143)

and if µ1 = µ2 = 0 (corresponding to β1 = β2 = 0) then

1
σ2 YT H0Y ∼χ2(1). (9-144)

Implying that if µ1 = µ2 then

F1 =
1

σ2 YT(H1 − H0)Y/1
1

σ2 YT(I − H1)Y/(n − 2)
=

YT(H1 − H0)Y
YT(I − H1)Y/(n − 2)

∼ F(1, n − 2),

(9-145)

and if further µ1 = µ2 = 0 then

F0 =
1

σ2 YT H0Y/1
1

σ2 YT(I − H1)Y/(n − 2)
=

YT H0Y
YT(I − H1)Y/(n − 2)

∼ F(1, n − 2).

(9-146)
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Proof

The proof follow the same steps as the proof of Corollary 9.27, i.e. use that Z =
1
σ (Y − Xβ) ∼ N(0, I), and write the partitioning of variation in terms of Z. The
details are left to the reader as Exercise 10.

■

It follows from Cochran’s Theorem (Theorem 9.23) that YT(H1 − H0)Y and
YT(I − H1)Y are independent (see Exercise 11), and as a consequence that (µ̂0 =
H0Y , µ̂1 = H1Y)

• µ̂0 and µ̂1 − µ̂0 are independent

• µ̂0 and Y − µ̂1 are independent

• µ̂1 − µ̂0 and Y − µ̂1 are independent

where µ̂i = HiY are the fitted values based on the projection Hi.

The result is in line with the results in Chapter 3, where we found the test-
statistics t to be t(n − 2)-distributed under the null hypothesis, and in that case
t2 ∼ F(1, n − 2). Further a central estimator for σ2 is

Corollary 9.30 Variance estimator

With Y and the projections as in Corollary 9.29, then a central estimator for
σ̂2 is

σ̂2 =
YT(I − H1)Y

n − 2
, (9-147)

the estimator is equal the pooled variance estimator presented in Example
2.85, furthermore the variance of the estimator is

V[σ̂2] =
2σ2

n − 2
. (9-148)
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Proof

The proof follow directly from Corollary 9.29, but see Exercise 12 for more details.

■

In light of the two corollaries (9.27 and 9.29) it is clear that the test statistics are
constructed by comparing variance estimators, that are valid under different
assumptions (hypothesis). The estimator in Corollary 9.30 is valid no matter
what the mean value in each group is (but assuming equal variance in the two
groups), while the estimation that could be constructed considering (9-143) or
(9-144) are only valid under specific hypothesis (µ1 = µ2 or µ1 = µ2 = 0).

9.8.1 Interpretation of parameters

The two encoding (9-137) and (9-138) result in different interpretation of the
estimated parameters. In the case (9-137) the parameters is the group means and
confidence intervals for the parameters are confidence intervals for the mean in
each group under the assumption of equal variance in the two groups. In the
encoding (9-138) the second parameter is the difference in group means and
a confidence interval for the second parameter is a confidence interval for the
difference in group means, again under the assumption of equal variance in the
two groups. See Exercise 15 for an other example of a parametrization.

9.9 Successive testing and partitioning of variation

The discussion of projections and Cochran’s theorem suggest that we can for-
mulate a series of nested hypothesis. Nested imply that simpler models are
included in the more complicated models by fixing some parameters to spe-
cific values (usually zero). The partitioning of variation can be done in different
ways, usually referred to as Type I, II and III, for the setup we consider here the
relevant once are I, and III.
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9.9.1 Type I partitioning of variation

Formally if hypothesis Hi belong to a linear subspace of Rn of dimension pi, we
can write

H0 ⊂ H1 ⊂ · · · ⊂ HM ⊂ Rn (9-149)

in practice this is usually realized by adding columns to the design matrix, and
an example is

X0 =1
X1 =[1 X̃1]

...
Xi =[Xi−1 X̃i]

...
XM =[XM−1 X̃M],

(9-150)

each design matrix, Xi, result in the projection matrix Hi,

Hi = Xi(XT
i Xi)

−1XT
i , (9-151)

and the residual variation is estimated by the projection matrix I − HM. We note
here that the results we present here are about projection matrices not the spe-
cific parametrization of the design matrix, the construction (9-150) is however a
useful way of making projections concrete.

Now define

SS0 =YT H0Y ;

SSi =YT(Hi − Hi−1)Y ; i = {1, ..., M}
SSE =YT(I − HM)Y ;

(9-152)

the dimension for each level is

d f0 =Trace(H0)

d fi =Trace(Hi)− Trace(Hi−1); i = {1, ..., M}
d fSSE =n − Trace(HM).

(9-153)

If Xi ∈ Rn×pi , then d fi = pi − pi−1 (and X̃i ∈ Rn×d fi). From a statistical test
perspective we have

Fi =
SSi/d fi

SSE/d fSSE
∼ F(d fi, d fSSE), (9-154)
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and statistical test can be based on the partitioning presented here. The parti-
tioning is called Type I partitioning of the variation and the test is conditioning
on the higher sources being zero. So for example Fi is conditioning on X̃j not
being included in the model for j > i. Formally we collect the results in the
following theorem

Theorem 9.31 Type I partioning and tests

If Y ∼ N(XMβ, σ2I), with XM as in (9-150), Hi as in (9-151), and β =
[β0, β̃T

1 , ..., β̃T
M]T, with β̃i parameters corresponding to X̃i. Then the orthog-

onal partitioning of variation can be written as

YTY = YT H0Y +
M

∑
i=1

YT(Hi − Hi−1)Y + YT(I − HM)Y , (9-155)

and, regardless of the value of β, then

1
σ2 YT(I − HM)Y ∼χ2(n − pM), (9-156)

further if β̃ j = 0, for j > i then

1
σ2 YT(Hj − Hj−1)Y ∼χ2(d f j); for all j > i. (9-157)

Implying that

Fj =
1

σ2 YT(Hj − Hj−1)Y/d f j
1

σ2 YT(I − HM)Y/d fSSE
=

YT(Hj − Hj−1)Y/d f j

YT(I − HM)Y/d fSSE
∼ F(1, d f j), (9-158)

for j > i.
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Proof

We start by (9-156); first note that

1
σ
(Y − XMβ) ∼ N(0, I), (9-159)

and hence 1
σ2 (Y − XMβ)T(Y − XMβ) ∼ χ2(n). In light of Cochran’s Theorem we

have

1
σ2 (Y − XMβ)T(Y − XMβ) =

1
σ2 (Y − XMβ)T HM(Y − XMβ)+

1
σ2 (Y − XMβ)T(I − HM)(Y − XMβ),

(9-160)

the two terms on the rhs follow independent χ2-distributions with pm and n − pm

degrees of freedom, respectively. Hence the first claim in the theorem is that

(Y − XMβ)T(I − HM)(Y − XMβ) = YT(I − HM)Y , (9-161)

which is true as XT
M HM = XT

MXM(XT
MXM)−1XT

M = XT
M. For the claims in (9-157), it

correspond to

(Y − XMβ)T(Hj − Hj−1)(Y − XMβ) = YT(Hj − Hj−1)Y (9-162)

when β̃ j = 0 for j > i, and using the notation βi = [β0, β̃T
1 , ..., β̃T

i ]
T we can write

(9-162) as

(Y − Xiβi)
T(Hj − Hj−1)(Y − Xiβi) = YT(Hj − Hj−1)Y (9-163)

and since XT
i Hj = XT

i for j > i (see Exercise 14) the proof is done.

■

The results are often collected in an analysis of variance (ANOVA) table as in
Table 9.1, usually the hypothesis H0 is that all observation have the same mean
value (Yi ∼ N(µ, σ2) and iid.), and also in the test setup it is assumed that the
model HM is sufficient, in the sense that the residual under that model are iid.
normally distributed with zero mean. The mean sum of squares are all central
estimators of the variance under the hypothesis of no effect (see Exercise 13).

In Type I partitioning of variation the total variation can be written as

YTY =
M

∑
i=0

SSi + SSE. (9-164)

In the Type I partitioning of variation the order in which variable enter the
model in general matters, as the test statistics are conditioning on the previ-



Chapter 9 9.9 SUCCESSIVE TESTING AND PARTITIONING OF VARIATION 38

Source of variation df Sum of Squares Mean SS F-statistics
H0 d f0 SS0

SS0
d f0

SS0/d f0
SSE/d fSSE

H1 d f1 SS1
SS1
d f1

SS1/d f1
SSE/d fSSE

...
...

...
...

...

HM d fM SSM
SSM
d fM

SSM/d fM
SSE/d fSSE

Residual d fSSE SSE SSE
d fSSE

Table 9.1: Partitioning of variation and resulting test statistics.

ous null-hypothesis already being accepted. For exploratory data analysis and
testing the Type III partitioning of variation is therefore often preferred.

Example 9.32 Items on a scale

We continue the example with items on a scale, again two items are put on scale
and weighted first separately then together. In this example we assume that the
recorded values are differences to a nominal value, hence the null hypothesis is that
the expected difference is zero for both item. There is in this case a fairly obvious
hierarchy of hypothesis: H0 : µ1 = µ2 = 0, H1 : µ1 = µ2 = µ and the full model
HM that allow different expected values for the two items (which is also assumed to
be sufficient). In this case the design matrices could be

X1 =

1
1
2

 ; XM =

1 0
0 1
1 1

 (9-165)

and for the null hypothesis there would be no design matrix as the mean value of
both items is zero.

The projections are illustrated in the plot below.
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From a geometric point of view the norms can be divided into (again using orthog-
onality)

||y||2 = ||yM||2 + ||y − yM||2, (9-166)

and further the norm of ŷM can be described as

||ŷM||2 = ||ŷ1||2 + ||ŷM − ŷ1||2, (9-167)

and combining we get

||y||2 = ||ŷ1||2 + ||ŷM − ŷ1||2 + ||y − yM||2. (9-168)

When testing the described hypothesis’s we compare these norms. It seems reason-
able that if the expected value of the two item are different then ||ŷ1 − ŷM||2 is large
and also if the expected value of the items is not zero then ||ŷ1||2 is large. The magni-
tude is evaluated relative to the variation of residuals (||y − yM||2), with the precise
statements given by the described F-tests. In the presented case the magnitude of
||ŷ1 − ŷM|| seems small while ||ŷ1|| is large compared to ||y − yM||, but the precise
statement should be based on statistical tests.



Chapter 9 9.9 SUCCESSIVE TESTING AND PARTITIONING OF VARIATION 40

The example above illustrate the geometric interpretation of the developed test-
statistics.

9.9.2 Type III partitioning of variation

In the Type III partitioning of variation every effect is tested in the setting of the
Type I, but formulated as if the effects entered last in the model, i.e. start with
the design matrix

XM =[1 X̃1 · · · X̃M], (9-169)

and the design matrix for testing level i is

X−i =[1 X̃1 · · · X̃i−1 X̃i+1 · · · X̃M], (9-170)

and the projection is written in a similar way as the Type I partitioning, i.e.

HM =XM(XT
MXM)−1XT

M

H−i =X−i(XT
−iX−i)

−1XT
−i,

(9-171)

and the partitioning of variation is

YTY = YT H−iY + YT(HM − H−i)Y + YT(I − HM)Y , (9-172)

there will be M (or M + 1 if the intercept is included) of those. The result is
collected in the theorem below
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Theorem 9.33 Type III partioning and test

If Y ∼ N(XMβ, σ2I), with XM as in (9-169), H−i as in (9-171), and β =
[β0, β̃T

1 , ..., β̃T
M]T, with β̃i parameters corresponding to X̃i. Then the orthog-

onal partitioning of variation can be written as

YTY = YT H−iY + YT(HM − H−i)Y + YT(I − HM)Y , (9-173)

and, regardless of the value of β, then (with p = Rank(HM))

1
σ2 YT(I − HM)Y ∼χ2(n − p) (9-174)

further if β̃i = 0, then (with pi = Rank(H−i))

1
σ2 YT(HM − H−i)Y ∼χ2(p − pi). (9-175)

Implying that if β̃i = 0, then

Fi =
YT(HM − H−i)Y/(p − pi)

YT(I − HM)Y/(n − p)
∼ F(p − pi, n − p). (9-176)

Proof

Follow the steps in the proof of Theorem 9.31.

■

The Type III partitioning is often presented in a table similar to Table 9.1, with

SSi = YT(HM − H−i)Y (9-177)

and the mean sum of squares in a similar way. However due to the construction
of the sum of squares, the individual sum of squares does not sum up to the total
sum of squares.

9.9.3 Variance estimator

Having estimated the mean value parameters, we also need an estimator for the
variance, given the discussion above, the answer is quite straight forward, and
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given in the theorem below

Corollary 9.34 Variance estimator

Provided that the model under HM is sufficient then

σ̂2 =
YT(I − HM)Y

d fSSE
(9-178)

with d fSSE = n − Trace(HM), is a central estimator for σ2, and further

d fSSEσ̂2

σ2 ∼ χ2(d fSSE). (9-179)

Proof

Follow directly from Theorem 9.31 and 9.33

■

One might re-calibrate the variance estimator, using a reduced model, meaning
that we replace HM by Hi for some i as identified by the model reduction.

9.9.4 Type I or Type III?

An obvious question might of course be if there is a Type II partitioning of vari-
ation, and there is. The Type II partitioning, is however related to models that
include interactions (or polynomials), and we will skip that for now, but give
some comments to how to perform model reduction.

Using the notation of Equation (9-150), and SS(X1|X2) meaning the sum of
square contribution related to X1 when we have already controlled for X2, then
the Type I partitioning correspond to a sequential test, testing for the signifi-
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cance of

SS(X̃1|X0)

SS(X̃2|X1)

...
SS(X̃M|XM−1),

(9-180)

hence in each test we condition on (or control for) all preceding levels (effects).
The Type III partitioning correspond to controlling for all other levels (effects)

SS(X̃1|X0, X̃2, ..., X̃M)

SS(X̃2|X1, X̃3, ..., X̃M)

SS(X̃3|X2, X̃4, ..., X̃M)

...
SS(X̃M|XM−1).

(9-181)

Hence we see that the two partitioning will agree for the last effect, but may
differ for all other effects. Even though there are situations where the Type I
partitioning is relevant, we recommend the Type III partitioning, in some of the
situation covered here the two partitioning actually agree for all levels.

9.10 Simple and multiple linear regression as a LM

The simple linear regression problem can be formulated in vector-matrix nota-
tion as or Y1

...
Yn

 =

1 x1
...

...
1 xn

 [
β0
β1

]
+

ε1
...

εn

 , εi ∼ N(0, σ2)

=Xβ + ε ∼ N(0, σ2I)

(9-182)

hence directly in the notation of the general linear model, and all the results
we have seen so far apply here. Further it is straight forward to generalize the
result to multiple linear regressionY1

...
Yn

 =

1 x11 · · · xp1
...

...
...

1 x1n · · · xpn


β0

...
βp

+

ε1
...

εn

 , εi ∼ N(0, σ2)

=Xβ + ε ∼ N(0, σ2I),

(9-183)

hence again in the notation of the general linear model and the results related
to test for model reduction (Type I or III) also apply here and also the central
estimator for the variance apply.
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The standard error of the parameter estimates are constructed from the variance-
covariance matrix

Σ̂β = σ̂2(XTX)−1. (9-184)

In summaries (from statistical software) results from a multiple linear regres-
sion model usually present the partial t-test (H0 : βi = βi,0), the general con-
structed is

β̂i − βi,0√
(Σ̂β)ii

∼ t(n − p), (9-185)

and p-values are usually reported for βi,0 = 0, the partial t-test correspond to a
specific Type III partitioning.

Theorem 9.35 Partial t-test and Type III partitioning of variation

The partial t-test for the hypothesis βi,0 = 0 and the Type III ANOVA test
are equivalent in the sense that is if X̃i is a vector then

t2
obs,i = Fi (9-186)

where Fi is the F-test statistics using the Type III partitioning, and both test
statistics should be compared to an F-distribution with 1 and n − p degrees
of freedom.

Proof

Without loss of generality we can set X̃ = [X v] ∈ Rn×p and use Lemma 9.6 to
write tobs as

tobs =
β̂p

σ̂/
√

k
, (9-187)

with k as in Corollary 9.7 and hence we have

t2
obs =

β̂2
p

σ̂2/k
. (9-188)

Type III F-test can be written as

Fp =
Y(H̃ − H)Y

Y(I − H)Y/(n − p)
=

Y(H̃ − H)Y
σ̂2 (9-189)
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also, using Corollary 9.7, we have

H̃ − H =
1
k
(HvvT H − vvT H − vvT H + vvT). (9-190)

Now we rewrite β̂p in terms of H and v, with A = (XTX)−1, we have

β̂ =(X̃TX̃)−1X̃TY

=

[
A + AXTvvT X A

k
−AXTv

k
−vT X A

k
1
k

] [
XT

vT

]
Y

=

[
AXT + AXTvvT H

k − AXTvvT

k
− vT H

k + vT

k

]
Y ,

(9-191)

and therefore

β̂p =
vT

k
(I − H)Y (9-192)

and since β̂p is a scalar (β̂2
p = β̂T

p β̂p) we can write

β̂2
p =

1
k2 YT (I − H) vvT (I − H)Y , (9-193)

and hence

t2
obs =

1
k YT (I − H) vvT (I − H)Y

σ̂2 (9-194)

and using (9-190) we get

1
k
(I − H) vvT (I − H) =

1
k

(
vvT − HvvT − vvT H + HvvT H

)
= H̃ − H (9-195)

we have shown that Fp = t2
obs and the proof is completed.

■

Test for total homogeneity

Often a test for total homogeneity will be reported along with the partial t-test
a discussed above, referring to (9-183) this correspond to the test

β1 = · · · = βp = 0 (9-196)

against the alternative that at least one variable have a significant effect (i.e.
reduce the sum of squares) in the output.
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Example 9.36 Temperature anomali

As an example we look at the so-called global temperature anomali, which is defined
as the global average temperature of a year minus the average global temperature
over the period 1900-2000. In the data the period covered is 1850-2023. The result of
a simple linear regression model is given below.

fitTemp = smf.ols(’Anomaly ∼ Year’,data = GlobalTemp).fit()
fitTemp.summary(slim=True)

<class ’statsmodels.iolib.summary.Summary’>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Anomaly R-squared: 0.605
Model: OLS Adj. R-squared: 0.603
No. Observations: 174 F-statistic: 263.2
Covariance Type: nonrobust Prob (F-statistic): 1.65e-36
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -12.0355 0.745 -16.146 0.000 -13.507 -10.564
Year 0.0062 0.000 16.224 0.000 0.005 0.007
==============================================================================

"""

From the summary it is clear that there is a significant increase of temperature, ac-
cording to the model the increase is around 0.0062 degrees per year. We will get back
to the validity of the model in the following sections. The p-values for intercept and
slope are both reported as 0 (of course it just mean that the are very small). The test
statistics for total homogeneity is 263.2, since this is a simple linear regression model
is equals the squared rest statistics for the slope (16.2242 = 263.2), and in this case
the numerical value of the p-value is actually given (1.65 · 10−36).

9.10.1 Linear transformation of regressors (input)

The LM is invariant to linear transformation of the design matrix, suppose for
example that we have collected some output under different temperature con-
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ditions, and hence hat the design matrix

XC = [1 t], (9-197)

where t is a collection of temperature measurements (measured in degrees Cel-
sius) and associated with some outcome to be modeled, someone now ask for
the same model but with temperature given in degrees Fahrenheit, i.e. the de-
sign matrix

XF = [1 f ], (9-198)

where f is the temperatures measured in degrees Fahrenheit, the conversion is

fi = 32 + 1.8ti, (9-199)

and hence we can write

XF = XC

[
1 32
0 1.8

]
. (9-200)

Hence the models are equivalent as long as the intercept is included. This prop-
erty (that model are invariant to linear transformations) is also the reason that
it is usually not recommended to remove the intercept in model selection steps,
and in the above example the models would not be equivalent if the intercept
would have been removed as part of a model selection procedure.

Example 9.37 Temperature anomali

In the temperature example above it seems reasonable to use either the mid-point
of the years ((1850 + 2023)/2 = 1936), or the the midpoint of the reference period
(1950) as reference. If we denote that point (i.e. either 1936 or 1950) as xre f , then the
transformation matrix would be

Xre f = X
[

1 −xre f
0 1

]
, (9-201)

here X is a matrix with the first column a vector of ones and the second column a
vector with the years. If xre f = 1936 then the parametrization is orthogonal and
otherwise it is not.

9.10.2 Residual analysis

Even though the raw residuals

r = Y − Ŷ = Y − HY (9-202)
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are often used for residual analysis, it is more common to use some standard-
ized version. First we note that even though the residual errors (ϵi) are iid. with
constant variance, then the observed residuals are not. The distribution of the
observed residuals is

r ∼ N(0, σ2(I − H)) (9-203)

and hence V[ri] = σ2(1− hii) where hii is the i’th diagonal element of H. In that
light it is natural to define standardized residuals

Definition 9.38 Standardized residualsa

Standardized residuals are defined as

rrs
i =

ri

σ̂
√

1 − hii
. (9-204)

aStandardized residuals are sometimes (e.g. in some Python packages) referred to as
internally Studentized residuals.

The standardized residuals are widely used and have the advantage that the
variance is constant (V[rrs

i ] = V[rrs
j ]), for all (i, j) if the model assumption is

correct. Hence the standardized residuals are well suited for assessing the as-
sumption of variance homogeneity, however the enumerator and denominator
are not independent, this imply that the standardized residuals have a very
complicated distribution, and hence for more precise assessment the Studen-
tized residuals are often used

Definition 9.39 Studentized residuals

Studentized residuals are defined as

rrt
i =

ri

σ̂(i)
√

1 − hii
, (9-205)

where σ̂2
(i) is the estimate of the variance, excluding the i’th observation.

One advantage of the Studentized residuals is that normalization factor is not
inflated by large values of ri, which may be a problem in the standardized ver-
sion. Further the distribution of the Studentized residuals is simpler.
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Theorem 9.40 Distribution of studentized residuals

ri and σ̂2
(i) are independent and

rrt
i ∼ t(n − p − 1). (9-206)

Proof

We have already established that n−p−1
σ2 σ̂2

(i) ∼ χ2(n − p − 1) and further from the
discussion in this section we also have that ri

σ
√

1−hii
∼ N(0, 1), and also

ri
σ
√

1−hii√
n−p−1

σ2 σ̂2
(i)

1
n−p−1

=
ri

σ̂(i)
√

1 − hii
= rrt

i , (9-207)

hence if ri and σ̂(i) are independent then the proof is done. To that end it is enough
to show that ri and (I − H)Y−i are independent.

For the independence we denote a specific row (i) of a matrix by Ai,·, and also all
rows except row i by A−i,·. With this we can write

ri =(I − H)i,·Y = Yi − Hi,·Y

σ̂2
(i) =YT

−i(I − H̃)Y−i,
(9-208)

where H̃ is the projection matrix for the model excluding the i’th observation. Hence
it suffice to show that the covariance between ri and (I − H̃)Y−1 is zero

Cov[ri, (I − H̃)Y−i] =Cov[Yi, (I − H̃)Y−i]− Cov[Hi,·Y , (I − H̃)Y−i]

=0 − Hi,·Cov[Y , Y−i](I − H̃),
(9-209)

now note that we can write Y−i as I−i,·Y , and since IT
−i,· = I·,−i, we have

Cov[ri, (I − H̃)Y−i] =− Hi,· I·,−i(I − H̃)

=− Hi,−i(I − H̃).
(9-210)

Hence we need to show that Hi,−i = Hi,−i H̃, for that purpose write the two matrices

Hi,−i =Xi,·(XTX)−1XT
−i,·

H̃ =X−i,·(XT
−i,·X−i,·)−1XT

−i,·,
(9-211)

and form the product

Hi,−i H̃ =Xi,·(XTX)−1XT
−i,·X−i,·(XT

−i,·X−i,·)−1XT
−i,·

=Xi,·(XTX)−1XT
−i,· = Hi,−i,

(9-212)

which complete the proof.

■
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From the definition it seems that one would have to re-estimate the model n
times in order to find the Studentized residuals, there does however exist solu-
tions for calculating the Studentized residual directly from the standardized (or
raw) residuals allowing fast computation.

Example 9.41 Temperature anomali

The standardized and Studentized residuals can be calculated in Python by

n = len(GlobalTemp["Year"])
X = np.array([np.repeat(1,n), GlobalTemp["Year"]]).T
H = X @ np.linalg.inv(X.T @ X) @ X.T
h = H.diagonal(0)
r = fitTemp.resid
sigma = np.sqrt(fitTemp.scale)
rstandard = r / (sigma * (np.sqrt(1 - h)))
rstudent = fitTemp.outlier_test()
rstudent

student_resid unadj_p bonf(p)
0 1.053760 0.293480 1.0
1 0.908978 0.364641 1.0
2 0.249237 0.803477 1.0
3 0.938548 0.349287 1.0
4 1.716483 0.087884 1.0
.. ... ... ...
169 2.330454 0.020950 1.0
170 2.305061 0.022365 1.0
171 1.222946 0.223033 1.0
172 1.966563 0.050852 1.0
173 2.561582 0.011283 1.0

[174 rows x 3 columns]

The outlier_test method include p-values for each of the residuals, either based
directly on the t-distribution of a Bonferroni adjusted version (in this case we do
174 tests). Here we focus on the visual inspection, implying residual vs. fitted and
qq-plot of the residuals
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ypred = fitTemp.predict(GlobalTemp)
fig, ax = plt.subplots(1,2)
fig = sm.qqplot(rstudent["student_resid"], stats.t,

distargs=(174-2-1,),line="q",a=1/2,ax=ax[0])
ax[0].set_title("Q-Q plot - Studentized res.")
ax[1].scatter(ypred, rstandard)
ax[1].set_xlabel("Fitted values")
ax[1].set_ylabel("Standardized Residuals")
ax[1].set_title("Residuals vs Fitted values")
plt.tight_layout()
plt.show()
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It is clear that the fit is not satisfactory, the Studentized residual does not follow a
t-distribution with 171 degrees of freedom and is seems that at least a quadratic term
is needed.

Influential observation

The residuals analysis is used for verifying the model assumptions, this im-
ply checking the distribution and variance homogeneity assumptions. As we
have discussed above the raw residuals does not have variance homogeneity
even when the iid. assumption is true. Therefore it is better to use standard-
ized or Studentized residuals for residual analysis. Further for verifying the
distributional assumption the Studentized residual have an advantage. We will
however also note that in most situations the adjustment made by

√
1 − hii is

small and conclusions in well designed problems will not be greatly affected by
which type of residuals we use.

A more important part of the residual analysis is to identify influential observa-
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tions. Observation with large residuals have a high impact on the loss function
(RSS), and as such these may have a large impact on the parameter estimates.
Using the Studentized also allow us to determine what a large residual is in ab-
solute terms (i.e. compare with a specific distribution function). Even though
large residuals are in violation of the distribution assumption of the model, it
may not have a very large impact on the mean value parameters.

Besides being far away from the model, prediction an observation can also be
unusual in the sense that the experimental condition are far away from other
experiential conditions. This is measured by leverage, which is defined as the
diagonal elements of H, in order to understand this consider the derivative of
the fitted vales wrt. the observations

∂ŷ
∂y

= H, (9-213)

hence it is a measure of the change in the fitted vales for a unit chance in the
observation. This imply that an observation with a high leverage has the poten-
tial of being very influential, and we should keep an extra eye on high leverage
points. This does not imply that we should avoid such points as they are helpful
in spanning the space of possible outcomes, however as they have the poten-
tial of greatly impacting the parameter values we should pay attention to those
points.

Hence when assessing the model assumptions we should

• check normality using standardized or Studentized residuals (qq-plot)

• check variance homogeneity using standardized or Studentized residuals
(residuals vs. fitted)

• keep an eye on leverage (e.g. plotting the leverage as a function of obs
number)

• check independence (when relevant), e.g. autocorrelation using using
standardized or Studentized residuals

Observation that have the largest influence on the model are those with high
leverage and a large absolute value of the residual, and the two are sometimes
combined in Cook’s distance (which wwe will not discuss here).

Example 9.42 Temperature anomali

The leverage corresponding to the explanatory variable (year) in the temperature
data is plotted below (left). We see that the leverage is smaller for observation close
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to the center of the observed explanatory variables and somewhat higher at the end-
points in the interval. The right plot is constructed imagining we have an observa-
tion of the temperature anomaly in year 1700, this is a quite extreme value compared
to the other observed years, and resulting in a very high leverage, and hence an ob-
servation there would have the potential to greatly influence the model.
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9.10.3 Multicollinarity

Multicollinarity is linked to high empirical correlation between columns in the
design matrix, and can often be identified through visual analysis of pairwise
plots of the regressors. Another way is to consider the correlation between pa-
rameters, or even more generally consider properties of the matrix XTX in par-
ticular the condition number can indicate if the matrix is close to singular.

Example 9.43 An ill-conditioned problem

To illustrate the multicollinarity problem consider the data

x1 = np.array([5.5, 6.5, -2.5, -6.5, -0.5, 1.5, -3.5, -1.5, -5.5, 4.5,
2.5, -4.5, 3.5, 0.5])

x2 = np.array([1.5, -3.5, 3.5, -1.5, 4.5, -5.5, -0.5, 6.5, -2.5, -4.5,

5.5, 2.5, 0.5, -6.5])
x3 = np.array([7.0, 3.0, 1.0, -8.0, 4.01, -4.01, -4.0, 5.0, -8.0, 0.0,

8.0, -2.0, 4.0, -6.0])
y = np.array([32.43, 15.54, 2.50, -15.62, 5.45, -8.61, -2.50, 33.33,

-39.56, -27.26, 14.44, -0.50, 22.66, -18.53])
datIll = pd.DataFrame({’x1’: x1, ’x2’: x2, ’x3’: x3, ’y’: y})
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x1, x2, and x3 are constructed such that the average of each of them is zero, and
hence the correlation between (not to be confused with the correlation between the
parameters) them can be calculate by

X = pd.DataFrame({’x1’: x1, ’x2’: x2, ’x3’: x3})
C = X.T @ X
Cd = np.diag(np.sqrt(np.diag(C)))
np.linalg.inv(Cd) @ C @ np.linalg.inv(Cd)

0 1 2
0 1.000000 -0.164835 0.646002
1 -0.164835 1.000000 0.646410
2 0.646002 0.646410 1.000000

here there are no very strong correlation, however the condition number is

np.linalg.cond(C)

10968536.72257104

which is extremely large. In this case the result of Type I and Type III partitioning of
variation will also be very different.

fit = smf.ols(’y ∼ x1 + x2 + x3’,data = datIll).fit()
## Type I
sm.stats.anova_lm(fit, typ = 1)

df sum_sq mean_sq F PR(>F)
x1 1.0 1193.490794 1193.490794 7.513585 0.020794
x2 1.0 3139.890575 3139.890575 19.767085 0.001243
x3 1.0 202.736604 202.736604 1.276322 0.284954
Residual 10.0 1588.443948 158.844395 NaN NaN

## Type III
sm.stats.anova_lm(fit, typ = 3)

sum_sq df F PR(>F)
Intercept 13.543779 1.0 0.085264 0.776254
x1 203.773250 1.0 1.282848 0.283797
x2 204.077732 1.0 1.284765 0.283458
x3 202.736604 1.0 1.276322 0.284954
Residual 1588.443948 10.0 NaN NaN
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hence we see that from the Type I analysis we should remove x3 (because it was
entered last), while the Type III analysis show that we can actually remove any of
the 3 regressors.

The example illustrate that there might be big differences in conclusion depend-
ing on the chosen partitioning and a natural question is if there are situations
where conclusions is aligned, the answer is given in the next theorem.

Theorem 9.44 Orthogonal parameters and and partioning

With an orthogonal parametrization (see Definition 9.25) then Type I and
Type III partitioning is equivalent.

Proof

An orthogonal parametrization imply that XTX = Λ, where Λii = λi and Λij = 0 if
i ̸= j. Hence (XTX)−1 = Λ−1 with (Λ−1)ii = 1/λi and zero otherwise. Now let the
columns of X be denoted by xi, the orthogonality imply that

H = X(XTX)−1XT =
p

∑
i=1

1
λi

xixT
i , (9-214)

testing using Type I partitioning we would have

Hi − Hi−1 =
i

∑
j=1

1
λj

xjxT
j −

i−1

∑
j=1

1
λj

xjxT
j =

1
λi

xixT
i , (9-215)

and in the Type III set up we would have

Hp − H−i =
p

∑
j=1

1
λj

xjxT
j − ∑

j ̸=i

1
λj

xjxT
j =

1
λi

xixT
i , (9-216)

hence exactly the same projection matrix and therefore also the same test-statistics,
p-values and so on.

■

The example above highlight some multicollinarity problems in addition to the
Type I and III partitioning not agreeing large changes in the parameter values
will also be present when reducing the model (see Exercise 16). Further Theo-
rem 9.44 state that we do not have to worry abut such problem if we already
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have an orthogonal parametrization. For the problems we consider here (XTX)
is invertible, and it is always possible to transform a multicollinarity problem
to an orthogonal parametrization (see Section 9.13.2). The price to is pay is in-
terpretability of the parameters.

9.10.4 Polynomial and basis function regression

Polynomial regression is often used as a way of modeling otherwise non-linear
relationships, it is well known that any continuous function can be approxi-
mated by its Taylor expansion, hence if we assume that

Yi = f (xi) + ϵi; ϵi ∼ N(0, σ2), (9-217)

then Yi can be approximated by

Yi ≈
p

∑
j=0

1
j!

f (j)(x0)(xj − x0)
j + ϵi; ϵi ∼ N(0, σ2), (9-218)

and as p → ∞ the approximation becomes better. When used in statistical mod-
eling, we do not known the coefficients

(
1
i! f (i)(x0)

)
, and hence the statistical

model would be

Yi =
p

∑
j=0

β j · (xi − x0)j + ϵi; ϵi ∼ N(0, σ2), (9-219)

here we can choose the expansion point (x0) as we please. The choice of x0 will
however affect the parameter correlation and thereby the multicollinarity of the
problem, often the problem is actually casted as

Yi =
p

∑
j=0

β jx
j
i + ϵi; ϵi ∼ N(0, σ2) (9-220)

such an parametrization may lead to strong multicollinarity and often the model
is formulated as

Yi =
p

∑
j=0

β j · pj(xi) + ϵi; ϵi ∼ N(0, σ2) (9-221)

where pj(xi) is a j’th order polynomial, chosen such that

n

∑
i=1

pk(xi)pl(xi) = 0; for k ̸= l. (9-222)

resulting in an orthogonal parametrization. Often the extra constraint ∑i pk(xi)
2 =

1 for k > 0 is added.
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Example 9.45 Temperature anomali

The analysis in Example 9.41 suggest that at least a quadratic term should be in-
cluded. As a starting point we might included a forth order polynomial, in the sum-
mary below pj_raw is short for (Yeari/max(Year))j, from the partial t-test it seems
that none of coefficient are significant. However it is also clear from the test of total
homogeneity that at least one of the terms are significant. Further it is noted in the
summary that the smallest eigenvalue is 2 · 10−13 indicating very strong multicolli-
narity.

fitTemp4 = smf.ols(’Anomaly ∼ p1_raw + p2_raw+ p3_raw+p4_raw’,
data = GlobalTemp).fit()

fitTemp4.summary(slim=True)

<class ’statsmodels.iolib.summary.Summary’>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Anomaly R-squared: 0.839
Model: OLS Adj. R-squared: 0.835
No. Observations: 174 F-statistic: 220.0
Covariance Type: nonrobust Prob (F-statistic): 7.31e-66
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 5915.1051 4.01e+04 0.148 0.883 -7.32e+04 8.5e+04
p1_raw -2.707e+04 1.68e+05 -0.162 0.872 -3.58e+05 3.04e+05
p2_raw 4.64e+04 2.63e+05 0.177 0.860 -4.72e+05 5.65e+05
p3_raw -3.531e+04 1.83e+05 -0.193 0.847 -3.97e+05 3.26e+05
p4_raw 1.007e+04 4.78e+04 0.211 0.833 -8.43e+04 1.04e+05
==============================================================================

[2] The smallest eigenvalue is 2.01e-13. This might indicate that there are
"""

In addition to the notes made above we also see very large coefficient (the output is
plus minus a few degrees and the coefficient are above 104). Of course we can in this
case just check third and second degree order polynomials
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sm.stats.anova_lm(fitTemp2,fitTemp3,fitTemp4)

df_resid ssr df_diff ss_diff F Pr(>F)
0 171.0 4.821795 0.0 NaN NaN NaN
1 170.0 4.559946 1.0 0.261849 9.707168 0.002155
2 169.0 4.558750 1.0 0.001196 0.044341 0.833474

It is clear that the model can be reduced to a third degree polynomial, but should
probably not be reduced further.

As illustrated in the above example care should be taken when constructing
polynomial regression models. Strong multicollinarity might be introduced if
polynomials are naively formulated, below we will discuss how orthogonal
polynomials can be formulated.

Construction of orthogonal polynomials

The definitions discussed above might seems a bit abstract and difficult to han-
dle in practice, it is however quite simple to set up recursive algorithms for the
construction. Start by setting p0(xi) = 1, and define

p1(xi) = a10 + xi (9-223)

the orthogonality constraint imply

∑
i

p0(xi)p1(xi) = ∑
i

a10 + xi = na10 + nx̄ = 0 (9-224)

or a10 = −x̄. For the normalization set

p̃1(xi) = a11(a10 + xi) (9-225)

and hence the normalization imply

∑ p̃1(xi)
2 = a2

11(a10 + xi)
2 = 1 (9-226)

or a11 = 1/
√

∑(a10 + xi)2 = 1/
√

∑(xi − x̄)2 and hence

p̃1(xi) = − x̄√
∑(xi − x̄)2

+
xi√

∑(xi − x̄)2
(9-227)

In order to simplify notation we will set pki = pk(xi) (i.e. the k’th order polyno-
mial applied to xi), for the second order polynomial (p2i = a20 + a21xi + x2

i ) we
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have

∑ p̃0i p2i =∑
i

a20 p̃0i + a21 p̃0ixi + x2
i p̃0i = a20np̃0 + a21np̃0x + nx2 p̃0 = 0

∑ p̃1i p2i =∑
i

a20 p̃1i + a21 p̃1ixi + x2
i p̃1i = a20np̃1 + a21np̃1x + nx2 p̃1i = 0,

(9-228)

where the “bar” notation simply means the average of what is under the bar
(e.g. p1x = 1

n ∑i p1ixi). This define a set of linear equations[
p̃0 p̃0x
p̃1 p̃1x

] [
a20
a21

]
=

[
−x2 p̃0

−x2 p̃1

]
(9-229)

which is easily solved numerically, finally the polynomial can be normalized by

a22 =
1√

∑i p2
2i

(9-230)

and setting ã20 = a22a20 and ã21 = a22a21 by the same factor to get the polyno-
mial

p̃2i = ã20 + ã21xi + a22xi. (9-231)

In general we can calculate the the first k coefficient of the k’th order orthogonal,
based in the previous polynomials as the solution to p̃0 p̃0x · · · p̃0xk−1

...
...

...
p̃k−1 p̃k−1x · · · p̃k−1xk−1


 ak0

...
ak,k−1

 =

 −xk p̃0
...

−xk p̃k−1

 (9-232)

which can again be normalized as in the case of the second degree polynomial.

Example 9.46 Temperature anomali

The figure below show the orthogonal and the “raw” polynomials (Example 9.45),
the “raw” polynomials all seems linear on this scale. This apparent linearity leads to
the large multicollinarity problems that was evident in Example 9.45. On the other
hand it is clear orthogonal polynomials are well separated and able to take care of
different shapes in the resulting models.
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The result of fitting the 4’th order orthogonal polynomials to data is given in the
summary table below, the overall statistics (test for total homogeneity, and R2) are
the same, but we can now directly from the output see that the 3’rd order polynomial
should be included (using the usual 5%) level, but that the 4’th order should not.
Also the extreme values of the parameters are no longer present.

fitTemp4ort = smf.ols(’Anomaly ∼ p1 + p2 + p3 +
p4’,data=GlobalTemp).fit()
fitTemp4ort.summary(slim=True)

<class ’statsmodels.iolib.summary.Summary’>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Anomaly R-squared: 0.839
Model: OLS Adj. R-squared: 0.835
No. Observations: 174 F-statistic: 220.0
Covariance Type: nonrobust Prob (F-statistic): 7.31e-66
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0545 0.012 4.380 0.000 0.030 0.079
p1 4.1365 0.164 25.186 0.000 3.812 4.461
p2 2.5217 0.164 15.354 0.000 2.197 2.846
p3 0.5117 0.164 3.116 0.002 0.187 0.836
p4 0.0346 0.164 0.211 0.833 -0.290 0.359
==============================================================================

"""

For completeness we include a more complete residual and model analysis of the
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final 3’rd order polynomial regression model. The figure below show that the model
follow the data quite well, and there are no systematic behavior in the standardized
residuals vs. fitted values (of course there are many observations of small fitted
values, but that is the nature of data). Also the qq-plot of Studentized residuals
does not raise any concerns, there is one quite large Studentized residual of about 4,
which is caused by the unusually high temperature around the year 1880.

The last plot is used for assessing the independence assumption and is based on the
standardized residuals. The data is given as a time-series and therefore it is reason-
able to check the correlation between observations at time t and time t + 1, even
though weak there seem to be some positive temporal correlation in the residuals.
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For a more precise statement on the correlation between rrs
i and rrs

i+1 we can calculate
it in Python by
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n = len(rstandard)
r1 = rstandard[0:(n-1)]
r2 = np.roll(rstandard,-1)[0:(n-1)]
res = pd.DataFrame({"r1" : r1, "r2" : r2})
res.corr()

r1 r2
r1 1.000000 0.234337
r2 0.234337 1.000000

hence an estimated correlation of about 0.234, which by (9-130) (on page 30), should
be compared with a N(0, 1/(n − 1)) distribution, the resulting test statistics is
z = 0.234/

√
1/173 = 3.08, and hence there is a significant autocorrelation in the

residuals. Even though there is a significant autocorrelation it is small in this case
and not expected to affect the estimation results greatly in this case.

In the example above we saw that including orthogonal polynomial gave more
reasonable results and in that light it is important. However simpler meth-
ods will often be enough, e.g. subtraction the average of the regressors usually
make polynomial regression much more robust (even though not completely
orthogonal). In addition variants of polynomial basis functions, like Legen-
dre polynomials, will often also do very good (when implemented appropriate
ways). Hence simpler measures can be taken that greatly improve the condition
number without making everything completely orthogonal.

Other basis functions

Before using polynomial regression one should carefully consider if it is the
right choice, for example if there is a natural periodicity (e.g. hour of day) it is
better to use Fourier series expansion, i.e. replace β j · pj(xi) by β1jsin(j2πxi/P)+
β2jcos(j2πxi/P) where P is the period (e.g. 24 hours). Finally more local basis
functions (e.g. spline basis functions) are often used.

Predictions using basis function

Extrapolation the results of linear regression models should always be done
with care, this is especially true if polynomial type basis functiuons are used.
The behaviour of the resulting functions may be quite extreme in areas where
there are no data.
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9.11 One-way ANOVA as a LM

The one-way ANOVA model can be written as

Yij = βi + ϵij; ϵij ∼ N(0, σ2), (9-233)

in the following we will assume that the vector of observations is organized as
y = [y11, y12, ..., y1n1 , y21, ..., y2n2 , ..., yKnK ], with that convention the design ma-
trix for the one-way ANOVA model can be written as

X =


1n1 0n1 . . . 0n1

0n2 1n2 . . . 0n2
... . . . ...

0nK 0nK . . . 1nK

 , (9-234)

in this case the parameters are the group means. The standard encoding, in e.g
Python, is

X2 =


1n1 0n1 . . . 0n1

1n2 1n2 . . . 0n2
... . . . ...

1nK 0nK . . . 1nK

 , (9-235)

in which case the first parameters is the mean of group 1 and the remaining
parameters is the difference between mean in group 1 and and group i, β =
[µ1, µ2 − µ1, . . . , µK − µ1]

T. Again we can write X2 as

X2 = XT , (9-236)

with

T =


1 0 . . . 0
1 1 . . . 0
... . . . ...
1 0 . . . 1

 , (9-237)

and hence the two models are equivalent.

In Chapter 8 we considered the model

yij = µ + αi + ϵij, (9-238)

such a model is over-parameterized and in Chapter 8 this over-parametrization
was dealt with (even though not explicitly mentioned) by the linear constraints

K

∑
i=1

niαi = 0. (9-239)
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We can now choose an arbitrary reference level, e.g. group K, and write

αK = −
K−1

∑
i=1

ni

nK
αi (9-240)

and with µi = µ + αi we can write

X3 =


1n1 1n1 . . . . . . 0n1

1n2 0n2 1n2 . . . 0n2
...

... . . . ...
1nK−1 0nK−1 . . . 1nK−1

1nK − n1
nK

1nK . . . . . . −nK−1
nK

1nK

 , (9-241)

which again can be written as

X3 = XT , (9-242)

for appropriate choice of T .

9.11.1 Orthogonal design: Helmert-transform

The formulation (9-234) is an orthogonal parametrization, however there is not
one parameter for the over all mean value, but rather one parameter for the
mean in each group. In the balanced case another orthogonal transformation is
the Helmert transformation, defined by

TH =



1 −1 −1 −1 . . . −1
1 1 −1 −1 . . . −1
1 0 2 −1 . . . −1
1 0 0 3 . . . −1
...

... . . . . . . ...
1 0 . . . 0 k − 1


, (9-243)

if TH is “normalized” by a diagonal matrix D with Dii = 1/i (i.e. THN = TD),
the interpretation of the parameters is (Exercise 17)

β̂1 =ȳ

β̂i =ȳi+1 −
1
i

i

∑
j=1

ȳj, for i = 1, 2, ..., k − 1.
(9-244)

Hence the difference between group i and the average of the preceding groups.
Orthogonality imply that variances of linear combinations of parameters are
easily calculated, and also as discussed above that Type I and Type III are equiv-
alent.
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9.11.2 Statistical tests

Statistical test are preformed exactly as we have seen in the previous sections,
compared to the linear regression the only difference is that usually the per-
formed test is the test for total homogeneity (all mean values are equal), and
hence no discussion about the order. The post hoc analysis (i.e. when the null
hypothesis is rejected), does include a decision on the partitioning.

9.11.3 Contrasts

The matrix T define so-called contrasts, we will no go further into that subject
here, just mentioned that the transformation defined by (9-237) is often called
treatment-coding, while the formulation (9-241) is (at least in the balanced case
(ni = nj)) called sum-coding.

9.11.4 Partial tests and post hoc analysis

If we are interested in a particular quantity (e.g. µi − µj for fixed (i, j)), then
we can simply formulate the model such that the difference is a parameter and
use the usual partial t-test. In more generality, if we are interested in all pair-
wise comparisons (as in Method 8.9), it correspond to a Type III partitioning of
variation.

Theorem 9.47 Post hoc comparison and Type III

The post hoc comparison in Methods 8.9 and 8.10, is equivalent to compar-
ing the model

Yij = βi + ϵij; ϵij ∼ N(0, σ2) (9-245)

to a model where βl = βh using a Type III partitioning of variation.
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Proof

Method 8.10 state that under the hypothesis that µl = µh then

tobs =
Ȳl − Ȳh√

MSE
(

1
nl
+ 1

nh

) ∼ t(n − k) (9-246)

implying that t2
obs ∼ F(1, n − k). Hence we need to show that

YT(H − H0)Y
YT(I − H)Y/d fSSE

= t2
obs, (9-247)

where H is the projection matrix corresponding to the full model and H0 is the
projection matrix corresponding to the null hypothesis. First note that MSE =

YT(I − H)Y/d fSSE, and hence we need to show that

(Ȳl − Ȳh)
2

1
nl
+ 1

nh

= YT(H − H0)Y . (9-248)

The projection matrix for the model is

H =


1
n1

En1n1 0n1n2 . . . 0n1nk

0n2n1
1
n2

En2n2 . . . 0n2nk
...

. . .
...

0nKn1 0nKn2 . . . 1
nk

EnKnk

 (9-249)

where Eninj is an ni by nj matrix of ones. Without loss of generality we can consider
l = 1 and h = 2, in that case the null hypothesis correspond to the design matrix

X0 =


1n1 0n1 . . . 0n1

1n2 0n2 . . . 0n2

0n3 1n3 . . . 0n3
...

. . .
...

0nK 0nK . . . 1nK

 (9-250)

resulting in

H0 =


1

n1+n2
En1+n2,n1+n2 0n1+n2,n3 . . . 0n1+n2,nk

0n3,n2+n1
1
n3

En3n3 . . . 0n3nk
...

. . .
...

0nk ,n1+n2 0nkn2 . . . 1
nk

Enknk

 (9-251)

and hence

H − H0 =


(

1
n1

− 1
n1+n2

)
En1,n1 − 1

n1+n2
En1,n2 0

− 1
n1+n2

En2,n1

(
1
n2

− 1
n1+n2

)
En2n2 0

0 0 0

 (9-252)
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now since YT
i Eni ,niYi = n2

i Ȳ2
i , and YT

1 En1,n2Y2 = n1n2Ȳ1Ȳ2 we get

YT(H − H0)Y =

(
1
n1

− 1
n1 + n2

)
n2

1Ȳ2
1 +

(
1
n2

− 1
n1 + n2

)
n2

2Ȳ2
2−

2
n1 + n2

n1n2Ȳ1Ȳ2

=n1Ȳ2
1 + n2Ȳ2

2 − 1
n1 + n2

(n1Ȳ1 + n2Ȳ2)
2

=
1

n1 + n2
(n1(n1 + n2)Ȳ2

1 + n2(n1 + n2)Ȳ2
2 − (n1Ȳ1 + n2Ȳ2)

2)

=
1

n1 + n2
(n1n2Ȳ2

1 + n2n1Ȳ2
2 − 2n1n2Ȳ1Ȳ2)

=
n1n2

n1 + n2
(Ȳ1 − Ȳ2)

2

=
(Ȳ1 − Ȳ2)2

1
n1

+ 1
n2

(9-253)

which is (9-248).

■

Of course the comments on multiple testing still apply and the significance level
might be adjusted accordingly. As a more general remark it also imply that
when using Type III partitioning the risk of over parametrization should always
be taken into account, in particular if a high number of hypothesis are tested
during model development.

9.12 Two-way ANOVA as a LM

The two-way anova model can be written as

Yij = µ + αi + β j + ϵij; ϵij ∼ N(0, σ2) (9-254)

as we will see below the model is easily written as an LM, we start by showing
the equivalence between a specific two-way anova and the paired t-test.

9.12.1 Paired t-test as an LM

The paired t-test can be written as a two-way anova model as

Y1j = µ1 + β j + ϵ1j; ϵ1j ∼ N(0, σ2) (9-255)
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if the observation is from group 1 and

Y2j = µ2 + β j + ϵ2j; ϵ2j ∼ N(0, σ2) (9-256)

if the observation is from group 2. In the paired t-test set up we consider

Dj = Y1j − Y2j =µ1 − µ2 + ϵ1j − ϵ2j

=µD + ϵ̃j; ϵ̃j ∼ N(0, σ̃2),
(9-257)

note that the assumption of equal variance is not formally a part of the paired
t-test as the method only “see” the difference (ϵ̃j), actually ϵ1,j and ϵ2,j does not
even have to be independent or normally distributed.

The system described in (9-255)-(9-256) is over parameterized (we cannot iden-
tify µ1, µ2 and β1, ..., βn), as discussed in the previous section there are a number
of ways to solve this, one is to parameterized by

Y1,j =
1
2

µD + β j + ϵ1,j

Y2,j =− 1
2

µD + β j + ϵ2,j,
(9-258)

with the design matrix

X =

[ 1
21 I
−1

21 I

]
, (9-259)

which is an orthogonal parametrization (see Exercise 18). The parameters are
β = [µD, β1, ..., βn]T. The estimator for µ̂D is the average difference is (see Exer-
cise 18)

µ̂D = Ȳ1 − Ȳ2 = D̄, (9-260)

and we known from Chapter 2 that the usual paired t-test is

tobs =
D̄

sD/
√

n
∼ t(n − 1), (9-261)

hence equivalence between the two-way anova setup and the paired t-test cor-
respond to s2

D/n = SSE/d fSSE(XTX)−1
11 , it can be shown that (Exercise 18)

SSE = YT(I − H)Y =
1
2

n

∑
i=1

(Di − D̄)2 (9-262)

and that (XTX)−1
ii = 2

n , and further d fSSE = n − 1. Hence

SSE
d fSSE

(XTX)−1
11 =

1
n

1
n − 1

n

∑
i=1

(Di − D̄)2 =
s2

D
n

, (9-263)

showing the equivalence. An added benefit of the anova approach is that the
effect of “subjects” (β̂ j) is estimated as part of the procedure.
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9.12.2 Two-way anova as an LM

In the general case of two way anova a direct approach for the design matrix
could be

X0 =


1b 0b . . . 0b I
0b 1b . . . 0b I
... . . . ...

...
0b 0b . . . 1b I

 , (9-264)

where b is the number of “blocks” and the number of treatments is k. The model
is over-parameterized (rank(X) is b + k − 1 not b + k), as e.g. the first column
can be written as the sum of the last b columns minus column 2 through k.
Hence one column should be removed, e.g. by replacing I with

Ĩ =

[
0

Ib−1

]
. (9-265)

In this case the first k parameters are the mean value for the k treatments when
observing from block 1, and the remaining b− 1 parameters describe the deriva-
tion from those values due to different block effects.

Hence one encoding of the two-way anova is

X =


1b 0b . . . 0b Ĩ
0b 1b . . . 0b Ĩ
... . . . ...

...
0b 0b . . . 1b Ĩ

 . (9-266)

A more common encoding is

X1 =


1b 0b . . . 0b Ĩ
1b 1b . . . 0b Ĩ
... . . . ...

...
1b 0b . . . 1b Ĩ

 , (9-267)

in this case the first parameter is the expected value for an observation in treat-
ment 1 and block 1. And the transformation between the two formulation can
be done by the matrix

T =

 1 0 0
1b−1 Ib−1 0

0 0 Ib−1

 . (9-268)
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Finally we considered the model

Yij = µ + αi + β j + ϵij (9-269)

in Chapter 8, and the implicit constraints are

k

∑
i=1

αi = 0;
l

∑
j=1

β j = 0, (9-270)

and with the same arguments as in the one-way ANOVA model the design
matrix can be written as (see Exercise 19 )

XT =


1 1 0 . . . 0 B
1 0 1 . . . 0 B
...

... . . . ...
1 0 0 . . . 1 B
1 −1 . . . −1 B

 (9-271)

with

B =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1
−1 −1 . . . −1

 =

[
Il−1
−1T

]
. (9-272)

The transformation between the encoding is a bit more complicated in the case.
Regardless of the particular parametrization, then testing in the two-way anova
model in situations as describe above is the same regardless of the used separa-
tion of variation (type I or II). In order to be able to make the precise statement
we need the concept of balanced design.

Definition 9.48 Balanced design

A design matrix is said to be balanced if the number of observations for any
given combination of factors is the same fixed number.

In a two-way ANOVA there are 2 factors each on a number of levels, further
in the development we have presented here it is assumed that the number of
observations is exactly one for each combination. Of course the definition hint
to the fact that we could have more than one, but then the design matrix is
only balanced if there are exactly the same number of observations for each
combination. We can now make the precise statement about equivalence of the
tests.
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Theorem 9.49 Equivalence between Type I and Type III

For two-way ANOVA with balanced design, the Type I and Type III parti-
tioning of variation is equivalent.

In the proof below some steps are skipped, as these are much better done us-
ing Kronecker products, and the point is mostly which matrices that should be
compared.

Proof

We consider the following design matrices

X =


0b · · · 0b I
1b 0b I

. . .
...

...
0b · · · 1b I

 ; XTr =

1b · · · 0b
...

. . .
...

0b · · · 1b

 ; XBl =

I
...
I

 ; X0 = 1, (9-273)

and projection matrices based on each of these design matrices. The Type I parti-
tioning would be

YTY = YT H0Y + YT(HTr − H0)Y + YT(H − HTr)Y + YT(I − H)Y (9-274)

or

YTY = YT H0Y + YT(HBl − H0)Y + YT(H − HBl)Y + YT(I − H)Y (9-275)

depending on which effect (treatment or “block”) that entered the model last. Hence
we are done if we can show that H − HBl = HTr − H0 and H − HTr = HBl − H0. By
direct matrix multiplications it can be shown that

XTX =

[
bI Ek−1,b

Eb,k−1 kI

]
(9-276)

and it is easy to check that (using that Ek−1,bEb,k−1 = bEk−1,k−1)

(
XTX

)−1
=

[ 1
b (I + Ek−1,k−1) − 1

b Ek−1,b

− 1
b Eb,k−1

1
k

(
I + k−1

b Ebb

)] (9-277)

which imply that (and here we leave out some of the details, but see Exercise 20) the
projection matrix can be written as

H =

H11 · · · H1k
...

. . .
...

Hk1 · · · Hkk

 , (9-278)
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with

Hii =
1
k

I +
k − 1

kb
Ebb; and Hij =

1
k

I − 1
kb

Ebb, for i ̸= j. (9-279)

Now since XT
TrXTr = bI and XT

BlXBl = kI, we can write the corresponding elements
of the other projection matrices as

HTr,ii =
1
b

Ebb; HTr,ij = 0, for i ̸= j.

HBl,ij =
1
k

I; for all (i, j)

H0,ij =
1
bk

Ebb; for all (i, j)

(9-280)

and hence

Hii − HTr,ii =
1
k

I +
k − 1

kb
Ebb −

1
b

Ebb =
1
k

I − 1
kb

Ebb = HBl,ii − H0,ii

Hij − HTr,ij =
1
k

I − 1
kb

Ebb − 0 =
1
k

I − 1
kb

Ebb = HBl,ij − H0,ij

(9-281)

showing that H − HTr = HBl − H0, and further

Hii − HBl,ii =
1
k

I +
k − 1

kb
Ebb −

1
k

I =
k − 1

kb
Ebb = HTr,ii − H0,ii

Hij − HBl,ij =
1
k

I − 1
kb

Ebb −
1
k

I = − 1
kb

Ebb = HTr,ij − H0,ij

(9-282)

showing that H − HBl = HTr − H0 and completing the proof.

■

Theorem 9.49 show that in the case of two-way ANOVA with a balanced design,
we do not have to worry about differences in how we test. This is a unique prop-
erty of balanced design and it is usually not present in regression type models.
Further it is not unusual that there are missing data in a factorial experiment,
and then the two test strategies will differ. In general the Type III partitioning
of variation is simpler to understand, but of course observing mass significance
(and adjust significance levels), if many tests are conducted.

9.13 Further generalizations

Clearly one can imagine endless generalizations of the general linear model,
here we have selected a few that we will briefly cover without going into many
details of the modeling aspects. Instead focusing on the general model set up in
each of the cases.
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9.13.1 Multiple factors, interactions and regression

The one- and two way anova models that we have covered so far can be gen-
eralized to more than two factors in a fairly obvious way, so that we have mea-
surements a associated treatments on a number of different levels, e.g. the yield
from of some crop depending on the field (field), fertilized (fer), and pesti-
cides (pes), a simple model would be

Yi = β0 + β1(fieldi) + β2(feri) + β2(pesi) + ϵi; ϵi ∼ N(0, σ2),

where each of the parameters (e.g. β1) are actually vectors (e.g. with four fields
then β1 ∈ R3). In such a setup we can have more than one observation for each
combination of field, pesticide, and fertilizer. Clearly we can have an arbitrary
number of factors

Yi = β0 +
p

∑
j=1

βp(facji) + ϵi; ϵi ∼ N(0, σ2).

In these cases the design matrix may be parameterized by zeros and ones. All
comments on the design matrix that we have covered in the previous also hold
in this situation. Further interaction effects are often considered, corresponding
to the model

Yi =β0 + β1(fieldi) + β2(feri) + β2(pesi) + β4(fieldi, feri)+

β5(fieldi, pesi) + β5(feri, pesi) + ϵi; ϵi ∼ N(0, σ2),

this is referred to as a two-way interaction model, and of course we could imag-
ing three or four way interaction models. The number of parameters grow quite
fast and considerations on that should be taken. Again the comment on test still
apply, though higher order interactions are usually tested before main effects
(and lower order interactions), this is in essence what is referred to as Type II
partitioning of variation.

Regression analysis and factor analysis can also easily be implemented as an
LM, with one factor (on p levels) the model would be

Yi = β0(faci) + β1(faci)xi + ϵi; ϵi ∼ N(0, σ2) (9-283)

essentially implying that the slope is different in different groups, and it can
of course be combined with multiple factor and multiple regressors. With in-
creasing complexity of the models the choices of model reduction strategies also
become more important and some thoughts have to be out into that.
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9.13.2 Orthogonal parametrization: PCR

We have previously seen that multicollinarity should be dealt with if it occur.
In Chapter 6 we discussed very simple way to deal with it, in this section we
will briefly explain one way of removing multicollinarity all together, the price
to pay is that the interpretation of the parameters become much more difficult.
First note that the parameters are orthogonal (independent) if

XTX = Λ, (9-284)

where Λ is a diagonal matrix.

Assume that we have a design matrix

X =
[
1 x1 . . . xp

]
, (9-285)

the first column is independent from the remaining columns if x̄i = 0 for all i,
to see this consider

(XTX)1,i = 1Txi = ∑
j

xij = nx̄i. (9-286)

Hence defining the transformation matrix

T =


1 −x̄1 −x̄2 . . . −x̄p
0 1 0 . . . 0
... . . . ...
... . . . ...
0 . . . . . . . . . 1

 , (9-287)

we have

XT =
[
1 Xc

]
, (9-288)

where

(XT)TXT =

[
1 0
0 XT

c Xc

]
, (9-289)

if we denote the collection of eigen-vectors of XT
c Xc by W , then by definition

W−1XT
c XcW = Λ, (9-290)

where Λ is a diagonal matrix with diagonal elements equal the eigenvalues of
XT

c Xc, further as XT
c Xc is symmetric, we also have

W−1 = W T (9-291)
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by Lemma 9.3. And hence

(XcW)TXcW = Λ, (9-292)

and hence setting

Tw =

[
1 0
0 W

]
(9-293)

then with

X̃ = XTTw (9-294)

the parameters are orthogonal, i.e. X̃TX̃ is a diagonal matrix. The price to
pay is that each parameter refer to linear combinations of regressors, and hence
difficult to interpret.

9.13.3 Estimation correlation structures

The general linear model can be written as

Y ∼ Nn(Xβ, Σ), (9-295)

so far we have considered cases where Σ = σ2I, but is is natural to ask what
happens if Σ ̸= σ2I, or rather what happens if the observations are not inde-
pendent?

Actually the first question might be why the observations would not be inde-
pendent. Here the answer would be in data collection procedure, if data is
collected as a time series it is natural to assume serial dependence. This would
lead to time series models, and we will not go into any details here but just
mention the simplest model

ϵi = ϕϵi−1 + ui; ui ∼ N(0, σ2), (9-296)

with |ϕ| < 1, such a model is called an autoregresive model of order 1 (AR(1)),
and the resulting structure of the covariance matrix is

Σij =
σ2ϕ|i−j|

1 − ϕ2 , (9-297)

hence an exponential decay of the covariance as a function of distance in time
(|i − j|). Here we have one extra parameter (ϕ) that needs to be estimated.
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Another group of models that lead to non-diagonal covariance structures is the
linear mixed effect model, where we have multiple observations from each sub-
ject, and subjects are treated as random variables, in its simplest form the model
is

Yij = β0 + ui + ϵij; ui ∼ N(0, σ2
u), ϵij ∼ N(0, σ2). (9-298)

With both ui and ϵij iid and independent of each other. This structure lead to
a block diagonal structure where observations from different subjects have co-
variance zero, while different observations from the same subject have covari-
ance σ2

u and the variance of the observations is σ2 + σ2
u. Again we get an extra

parameter (σ2
u) to describe the covariance structure.

For estimating parameters in general covariance structures we will need more
general objective functions than the RSS, namely yhe so-called likelihood func-
tion. The models considered in this section can be written as

Y ∼ N(Xβ, Σ(ψ)) (9-299)

where ψ is the parameters of the covariance function (in our examples ψ =
[σ2, ϕ] or ψ = [σ2, σ2

u]).

The idea of likelihood estimation is to maximize the probability density function
wrt. the parameters, θ = [β, ψ], formally with L(θ) = f (y; θ), the likelihood
estimate is

θ̂ = arg max
θ

L(θ), (9-300)

usually the log-likelihood function l(θ) = log L(θ) have better numerical prop-
erties, and therefore the optimization problem is usually formulated as

θ̂ = argmax
θ

l(θ). (9-301)

In the cases we have considered here the probability density function can be
written as

f (y) =
1√

2π|Σ|
e−

1
2 (y−Xβ)TΣ−1(y−Xβ) (9-302)

which result in the log-likelihood

l(θ) = −1
2

log(|Σ|)− 1
2
(y − Xβ)TΣ−1(y − Xβ) (9-303)

where additive constants (related to 2π) have been omitted. Notice that in the
case where Σ = σ2I then

l(θ) =− n
2

log(σ2)− 1
2σ2 (y − Xβ)T(y − Xβ)

=− n
2

log(σ2)− 1
2σ2 RSS(β)

(9-304)
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and hence in that case the estimation of β is not affected by ψ, and maximizing
l(σ2, β), wrt. β is the same a minimizing RSS. In the general case the estimation
of β and ψ however have to the done jointly, and in some cases specific method
are available for specific models (e.g. conditional 1-step ahead distributions for
time series) while in other cases one simply have to optimize the log-likelihood
directly.
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9.14 Exercises

Exercise 9.1 Proof of Theorem 9.14

a) Prove Theorem 9.14, using the definition in equation (9-38).

Exercise 9.2 Independence and correlation

a) Simulate Y1, X and Y2 using the setting in Example 9.15.

b) Check that both Y1 and Y2 are normal, and plot Y2 as a function of Y1.

c) Calculate the correlation between Y1 and Y2 and plot Y2 as a function of Y1
and comment on the results

Exercise 9.3 Proff of Eq. (9-50)

a) Prove that rowsums of A in (9-49) is equal zero, i.e. that A1 = 0

b) Prove Eq. (9-48)

c) Prove Eq. (9-50).
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Exercise 9.4 Proff of Corollary 9.18

a) Show that when Y ∼ Nn(µ, Σ) then, Z = Λ−1/2V T(Y − µ) ∼ Nn(0, I),
with V , and Λ as in Lemma 9.3.

b) Prove Corollary 9.18.

Exercise 9.5 Projection matrix

a) Use exercise 3 to show that A in (9-49) is an orthogonal projection matrix.

Exercise 9.6 Proof of Lemma 9.22

a) Use Lemma 9.3, property 1 of Lemma 9.22 and Theorem 9.5 to prove prop-
erty 2 of Lemma 9.22.

Exercise 9.7 Correlation

a) With r as in (9-51) what is the correlation between ri and rj?

Exercise 9.8 Lag-1 autocorrelation

Consider the random variables ϵi ∼ N(0, σ2), iid. and t = {1, ..., n}. Now
consider the correlation estimate,

ρ̂ϵ(1) =
∑n−1

t=1 ϵtϵt+1

∑n
t=1 ϵ2

t
=

C
Q

, (9-305)

the idea of the questions below is that show that ρ̂ϵ(1) ≈ N(0, 1/n) by showing
that V[ρ̂ϵ(1)] ≈ 1/n. ρ̂ϵ(1) is simpler than ρ̂(1) in (9-129), but for n large the
behavior is similar.
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a) Show that E[C] = 0, E[Q] = nσ2, V[C] = (n − 1)σ4, V[Q] = 2nσ4, and
Cov[C, Q] = 0.

b) Use the result from question a) and non-linear error propagation to show
that V[ρ̂ϵ(1)] ≈ 1/n, for n large.

Exercise 9.9 Orthogonal projections

a) With H1 and H2 as in (9-70), show that Cov[H1Z, H2Z] = 0. Hint: Use
Theorem 9.10 and Exercise 5.

Exercise 9.10 Proof of Corollary 9.29

In this exercise we will prove Corollary 9.29 by a series of sub questions.

a) Show that if Y ∼ N(Xβ, σ2I) then

YT(I − H1)Y ∼ χ2(n − 2). (9-306)

Independently of the value of β

b) Show that if Y ∼ N(1µ, σ2I) then

YT(H1 − H0)Y ∼ χ2(1). (9-307)

independently of the value of µ, you may use the the formulation in (9-137)
to calculate H1, or simply use the fact that 1H1 = 1T (see Exercise 11).

c) Show that if Y ∼ N(0, σ2I) then

YT H0Y ∼ χ2(1). (9-308)
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Exercise 9.11 t-test Orthogonal projections

a) Show that the projection matrices in rhs of (9-141) are orthogonal i.e. H0(H1 −
H0) = 0, H0(I − H1) = 0 and (H1 − H0)(I − H1) = 0. Hint: you may start
by showing that XT

0 H1 = XT
0 . You may use the parametrization (9-137).

b) Use the result to show that

Cov[H0Y , (H1 − H0)Y ] =0
Cov[H0Y , (I − H1)Y ] =0

Cov[(H1 − H0)Y , (I − H1)Y ] =0
(9-309)

and hence that the projected vectors are independent. Also what is the
interpretation in trems of fitted values?

Exercise 9.12 t-test σ̂2 central

a) Show that σ̂2 (in Equation (9-147)) is a central estimator for the variance in
the LM, and find V[σ̂2].

Exercise 9.13 t-test Central estmators under Null-hypothesis

Consider the projection matrices for the two sample t-test (equation (9-141)),
consider two groups Y1,i ∼ N(µ1, σ2) and iid., i = {1, 2, ..., n1} and Y2,j ∼
N(µ2, σ2) and iid., j = {1, 2, ..., n2}. Define Y = [YT

1 , YT
2 ]

T = [Y1,1, ..., Y1,n1 , Y2,1, ..., Y1,n2 ]
T

and

a) Show that

YT(H1 − H0)Y =
n1n2

n1 + n2
(Ȳ1 − Ȳ2)

2 (9-310)

b) Show that E[YT(H1 − H0)Y ] =
n1n2

n1+n2
(µ1 − µ2)

2 + σ2
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• Under the assumption µ1 = µ2 = µ conclude that YT(H1 − H0)Y is a
central estimator for σ2, find the variance of this estimator, and compare
with the estimator (9-147).

Exercise 9.14 Nested projections

Let Xi be as in (9-150), i.e.

Xi =[Xi−1 X̃i] (9-311)

and condider the projection matrices based on Xi−1 ∈ Rn×pi−1 , and Xi ∈ Rn×(pi+qi)

(qi > 0)

Hi−1 =Xi−1(XT
i−1Xi−1)

−1XT
i−1

Hi =Xi(XT
i Xi)

−1XT
i

(9-312)

a) Show that XT
i Hi = XT

i .

b) Set A = (XT
i Xi)

−1, with

A =

[
A11 A12
A21 A22

]
(9-313)

with A11 ∈ Rpi×pi , A12 = AT
21 ∈ Rpi×qi , and A22 ∈ Rqi×qi , show that Akl

solve the equations

XT
i−1Xi−1A11 + XT

i−1X̃i A21 = I

XT
i−1Xi−1A12 + XT

i−1X̃i A22 = 0

X̃T
i Xi−1A11 + X̃T

i X̃i A21 = 0

X̃T
i Xi A12 + X̃T

i X̃i A22 = I

(9-314)

c) Use the result above to show that XT
i−1Hi = XT

i−1.
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Exercise 9.15 t-test parametrization

a) Assuming that Y1,i ∼ N(µ1, σ2) and Y2,j ∼ N(µ2, σ2) are iid and i ∈
{1, ..., n1} and j ∈ {1, ..., n2} formulate an LM (i.e. parametrize X)

Y = Xβ + ϵ; ϵ ∼ N(0, σ2I, (9-315)

with

Y =

[
Y1
Y2

]
; X =

[
1n1 a1n1

1n2 b1n2

]
(9-316)

such that the parametrization is orthogonal and β̂1 = 1
n1+n2

(n1Ȳ1 + n2Ȳ2),
i.e. the average of all observation, and β̂2 = Ȳ1 − Ȳ2.

Exercise 9.16 An ill conditioned problem

a) Using the data from Example 9.43 fit parameters for the full model and
parameter for a reduced model and compare the parameters values.

Exercise 9.17 Helmert transformation

a) With reference to (9-243) show that

THN =



1 −1/2 −1/3 −1/4 . . . −1/k
1 1/2 −1/3 −1/4 . . . −1/k
1 0 2/3 −1/4 . . . −1/k
1 0 0 3/4 . . . −1/
...

... . . . . . . ...
1 0 . . . 0 (k − 1)/k


, (9-317)

b) Using X as in (9-234) show that

XTHN =


1 −1

21 −1
31 . . . −1

k 1
1 1

21 −1
31 . . . −1

k 1
1 0 2

31 . . . −1
k 1

... . . . ...
1 0 0 . . . k−1

k 1

 (9-318)
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c) Show that

(XT
HNXHN)

−1 =
1
n


1
k 0 0 . . . 0
0 2 0 . . . 0
0 0 3

2 . . . 0
... . . . ...
0 0 0 . . . k

k−1

 (9-319)

d) Use the above to prove (9-244).

Exercise 9.18 Paired t-test

a) Show that the parametrization in (9-259) is an orthogonal parametrization.

b) Find the parameter estimates based on the desing matrix (9-259).

c) Find the projecion matrix corresponding to the desing matrix (9-259).

d) Prove (9-262) (Hint: you may use that YT
i E = nȲi1T)
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Exercise 9.19 2-way Anova sum-constraint

a) Find a matrix T such that

β̃ = Tβ (9-320)

with β̃ = [µ, α1, ...αk, β1, ..., βl]
T and β = [µ, α1, ...αk−1, β1, ..., βl−1]

T, such
that the constraints (9-270) are fulfilled.

b) Show that the constraints (9-270) can be realized by the desing matrix in
(9-271) (hint use the transfromation matrix T and the appropriate (non
identifiable) desing matrix corresponding to β̃).

Exercise 9.20 Two-way ANOVA*

This porpuse of this exercise is to show equation (9-278), this will rely on Kro-
necker products, and hence solving the exercise require basic understanding of
those.

First note that the (non-unique) design matrices can be written in terms of Kro-
necker products as

X =

[
0b,k−1 Ib

Ik−1 ⊗ 1b 1k−1 ⊗ Ib

]
; XTr = Ik ⊗ 1b; XBl = 1k ⊗ Ib; X0 = 1k ⊗ 1b

and

a) Use the above to write the projection matrices H0, HTr and HBl in terms of
Kronecker products.

b) Using (9-277) it is staight forward to show that

(XTX)−1 = C1 + C2 − C3 (9-321)

with

C1 =
1
b

[
I + Ek−1,k−1 −Ek−1,b
−Eb,k−1 Ebb

]
; C2 =

[
0 0k−1,b

0b,k−1
1
k I

]
;

C3 =

[
0k−1,k−1 0k−1,b
0b,k−1

1
bk Ebb

]
,

(9-322)

show that XC1XT = HTr, XC2XT = HBl, and XC3XT = H0, and hence
that H = HTr + HBl − H0.
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c) Use the above to conclude that H − HTr = HBl − H0 and H − HBl =
HTr − H0.
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