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6.1 Nitrate concentration

Exercise 6.1 Nitrate concentration

In order to analyze the effect of reducing nitrate loading in a Danish fjord, it was
decided to formulate a linear model that describes the nitrate concentration in
the fjord as a function of nitrate loading, it was further decided to correct for
fresh water runoff. The resulting model was

Yi = β0 + β1x1,i + β2x2,i + εi, εi ∼ N(0, σ2), (6-1)

where Yi is the natural logarithm of nitrate concentration, x1,i is the natural
logarithm of nitrate loading, and x2,i is the natural logarithm of fresh water
run off.

a) Which of the following statements are assumed fulfilled in the usual mul-
tiple linear regression model?

1 ) εi = 0 for all i = 1, ..., n, and β j follows a normal distribution

2 ) E[x1] = E[x2] = 0 and V[εi] = β2
1

3 ) E[εi] = 0 and V[εi] = β2
1

4 ) εi is normally distributed with constant variance, and εi and ε j are
independent for i 6= j

5 ) εi = 0 for all i = 1, ..., n, and xj follows a normal distribution for
j = {1, 2}

Solution

1 ) ε i follows a normal distribution with expectation equal zero, but the realiza-
tions are not zero, and further β j is deterministic and hence it does not follow
a distribution (β̂ j does), hence 1) is not correct

2 )- 3) There are no assumptions on the expectation of xj and the variance of ε equal
σ2, not β2

1 hence 2) and 3) are not correct

4 ) Is correct, this is the usual assumption about the errors

5 ) Is incorrect since ε j follow a normal distribution, further the are no distribu-
tional assumptions on xj. In fact we assume that xj is known
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The parameters in the model were estimated in R and the following results are
available (slightly modified output from summary):

> summary(lm(y ~ x1 + x2))

Call:
lm(formula = y ~ x1 + x2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.36500 0.22184 -10.661 < 2e-16
x1 0.47621 0.06169 7.720 3.25e-13
x2 0.08269 0.06977 1.185 0.237
---
Residual standard error: 0.3064 on 237 degrees of freedom
Multiple R-squared: 0.3438,Adjusted R-squared: 0.3382
F-statistic: 62.07 on 2 and 237 DF, p-value: < 2.2e-16

b) What are the parameter estimates for the model parameters (β̂i and σ̂2)
and how many observations are included in the estimation?

Solution

The number of degrees of freedom is equal n − (p + 1), and since the number of
degrees of freedom is 237 and p = 2, we get n = 237 + 2 + 1 = 240. The parameters
are given in the first column of the coefficient matrix, i.e.

β̂0 = −2.365 (6-2)

β̂1 = 0.476 (6-3)

β̂2 = 0.083 (6-4)

and finally the estimated error variance is σ̂2 = 0.30642.

c) Calculate the usual 95% confidence intervals for the parameters (β0, β1,
and β2).
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Solution

From Theorem 6.5 we know that the confidence intervals can be calculated by

β̂i ± t1−α/2 σ̂βi ,

where t1−α/2 is based on 237 degrees of freedom, and with α = 0.05, we get t0.975 =
1.97. The standard errors for the estimates is the second column of the coefficient
matrix, and the confidence intervals become

β̂0 = −2.365± 1.97 · 0.222 (6-5)

β̂1 = 0.467± 1.97 · 0.062 (6-6)

β̂2 = 0.083± 1.97 · 0.070 (6-7)

d) On level α = 0.05 which of the parameters are significantly different from
0, also find the p-values for the tests used for each of the parameters?

Solution

We can see directly from the confidence intervals above that β0 and β1 are signifi-
cantly different from zero (the confidence intervals does not cover zero), while we
cannot reject that β2 = 0 (the confidence interval cover zero). The p-values we
can see directly in the R output: for β0 is less than 10−16 and the p-value for β1 is
3.25 · 10−13, i.e. very strong evidence against the null hypothesis in both cases.
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6.2 Multiple linear regression model

Exercise 6.2 Multiple linear regression model

The following measurements have been obtained in a study:

No. 1 2 3 4 5 6 7 8 9 10 11 12 13
y 1.45 1.93 0.81 0.61 1.55 0.95 0.45 1.14 0.74 0.98 1.41 0.81 0.89
x1 0.58 0.86 0.29 0.20 0.56 0.28 0.08 0.41 0.22 0.35 0.59 0.22 0.26
x2 0.71 0.13 0.79 0.20 0.56 0.92 0.01 0.60 0.70 0.73 0.13 0.96 0.27

No. 14 15 16 17 18 19 20 21 22 23 24 25
y 0.68 1.39 1.53 0.91 1.49 1.38 1.73 1.11 1.68 0.66 0.69 1.98
x1 0.12 0.65 0.70 0.30 0.70 0.39 0.72 0.45 0.81 0.04 0.20 0.95
x2 0.21 0.88 0.30 0.15 0.09 0.17 0.25 0.30 0.32 0.82 0.98 0.00

It is expected that the response variable y can be described by the independent
variables x1 and x2. This imply that the parameters of the following model
should be estimated and tested

Yi = β0 + β1x1 + β2x2 + εi, εi ∼ N(0, σ2).

a) Calculate the parameter estimates (β̂0, β̂1, β̂2, and σ̂2), in addition find the
usual 95% confidence intervals for β0, β1, and β2.
You can copy the following lines to R to load the data:

D <- data.frame(
x1=c(0.58, 0.86, 0.29, 0.20, 0.56, 0.28, 0.08, 0.41, 0.22,

0.35, 0.59, 0.22, 0.26, 0.12, 0.65, 0.70, 0.30, 0.70,
0.39, 0.72, 0.45, 0.81, 0.04, 0.20, 0.95),

x2=c(0.71, 0.13, 0.79, 0.20, 0.56, 0.92, 0.01, 0.60, 0.70,
0.73, 0.13, 0.96, 0.27, 0.21, 0.88, 0.30, 0.15, 0.09,
0.17, 0.25, 0.30, 0.32, 0.82, 0.98, 0.00),

y=c(1.45, 1.93, 0.81, 0.61, 1.55, 0.95, 0.45, 1.14, 0.74,
0.98, 1.41, 0.81, 0.89, 0.68, 1.39, 1.53, 0.91, 1.49,
1.38, 1.73, 1.11, 1.68, 0.66, 0.69, 1.98)

)
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Solution

The question is answered by R. Start by loading data into R and estimate the param-
eters in R

fit <- lm(y ~ x1 + x2, data=D)
summary(fit)

Call:
lm(formula = y ~ x1 + x2, data = D)

Residuals:
Min 1Q Median 3Q Max

-0.155 -0.078 -0.020 0.050 0.301

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.43355 0.06598 6.57 1.3e-06 ***
x1 1.65299 0.09525 17.36 2.5e-14 ***
x2 0.00394 0.07485 0.05 0.96
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.113 on 22 degrees of freedom
Multiple R-squared: 0.94, Adjusted R-squared: 0.934
F-statistic: 172 on 2 and 22 DF, p-value: 3.7e-14

Solution

The parameter estimates are given in the first column of the coefficient matrix, i.e.

β̂0 = 0.434,

β̂1 = 1.653,

β̂2 = 0.0039,

and the error variance estimate is σ̂2 = 0.112. The confidence intervals can either be
calculated using the second column of the coefficient matrix, and the value of t0.975

(with degrees of freedom equal 22), or directly in R:
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confint(fit)

2.5 % 97.5 %
(Intercept) 0.2967 0.5704
x1 1.4555 1.8505
x2 -0.1513 0.1592

b) Still using confidence level α = 0.05 reduce the model if appropriate.

Solution

Since the confidence interval for β2 cover zero (and the p-value is much larger than
0.05), the parameter should be removed from the model to get the simpler model

yi = β0 + β1x1 + ε i, ε i ∼ N(0, σ2),

the parameter estimates in the simpler model are

fit <- lm(y ~ x1, data=D)
summary(fit)

Call:
lm(formula = y ~ x1, data = D)

Residuals:
Min 1Q Median 3Q Max

-0.1563 -0.0763 -0.0215 0.0516 0.2999

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4361 0.0440 9.91 9.0e-10 ***
x1 1.6512 0.0871 18.96 1.5e-15 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.11 on 23 degrees of freedom
Multiple R-squared: 0.94, Adjusted R-squared: 0.937
F-statistic: 360 on 1 and 23 DF, p-value: 1.54e-15

and both parameters are now significant.
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c) Carry out a residual analysis to check that the model assumptions are ful-
filled.

Solution

We are interested in inspecting a q-q plot of the residuals and a plot of the residuals
as a function of the fitted values

par(mfrow=c(1,2))
qqnorm(fit$residuals, pch=19)
qqline(fit$residuals)
plot(fit$fitted.values, fit$residuals, pch=19,

xlab="Fitted.values", ylab="Residuals")
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there are no strong evidence against the assumptions, the qq-plot is are a straight
line and the are no obvious dependence between the residuals and the fitted values,
and we conclude that the assumptions are fulfilled.

d) Make a plot of the fitted line and 95% confidence and prediction intervals
of the line for x1 ∈ [0, 1] (it is assumed that the model was reduced above).
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Solution

x1new <- seq(0,1,by=0.01)
pred <- predict(fit, newdata=data.frame(x1=x1new),

interval="prediction")
conf <- predict(fit, newdata=data.frame(x1=x1new),

interval="confidence")
plot(x1new, pred[ ,"fit"], type="l", ylim=c(0.1,2.4),

xlab="x1", ylab="Prediction")
lines(x1new, conf[ ,"lwr"], col="green", lty=2)
lines(x1new, conf[ ,"upr"], col="green", lty=2)
lines(x1new, pred[ ,"lwr"], col="red", lty=2)
lines(x1new, pred[ ,"upr"], col="red", lty=2)
legend("topleft", c("Prediction","Confidence band","Prediction band"),

lty=c(1,2,2), col=c(1,3,2), cex=0.7)
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6.3 MLR simulation exercise

Exercise 6.3 MLR simulation exercise

The following measurements have been obtained in a study:

Nr. 1 2 3 4 5 6 7 8
y 9.29 12.67 12.42 0.38 20.77 9.52 2.38 7.46
x1 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
x2 4.00 12.00 16.00 8.00 32.00 24.00 20.00 28.00

a) Plot the observed values of y as a function of x1 and x2. Does it seem
reasonable that either x1 or x2 can describe the variation in y?
You may copy the following lines into R to load the data

D <- data.frame(
y=c(9.29,12.67,12.42,0.38,20.77,9.52,2.38,7.46),
x1=c(1.00,2.00,3.00,4.00,5.00,6.00,7.00,8.00),
x2=c(4.00,12.00,16.00,8.00,32.00,24.00,20.00,28.00)

)

Solution

The data is plotted with

par(mfrow=c(1,2))
plot(D$x1, D$y, xlab="x1", ylab="y")
plot(D$x2, D$y, xlab="x1", ylab="y")
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There does not seem to be a strong relation between y and x1 or x2.

b) Estimate the parameters for the two models

Yi = β0 + β1x1,i + εi, εi ∼ N(0, σ2),

and

Yi = β0 + β1x2,i + εi, εi ∼ N(0, σ2),

and report the 95% confidence intervals for the parameters. Are any of the
parameters significantly different from zero on a 5% confidence level?



Chapter 6 6.3 MLR SIMULATION EXERCISE 13

Solution

The models are fitted with

fit1 <- lm(y ~ x1, data=D)
fit2 <- lm(y ~ x2, data=D)
confint(fit1)

2.5 % 97.5 %
(Intercept) -0.5426 24.898
x1 -3.1448 1.893

confint(fit2)

2.5 % 97.5 %
(Intercept) -7.5581 15.9659
x2 -0.2958 0.8688

since all confidence intervals cover zero we cannot reject that the parameters are in
fact zero, and we would conclude neither x1 nor x2 explain the variations in y.

c) Estimate the parameters for the model

Yi = β0 + β1x1,i + β2x2,i + εi, εi ∼ (N(0, σ2), (6-8)

and go through the steps of Method 6.16 (use confidence level 0.05 in all
tests).
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Solution

The model is fitted with

fit <- lm(y ~ x1 + x2, data=D)
summary(fit)

Call:
lm(formula = y ~ x1 + x2, data = D)

Residuals:
1 2 3 4 5 6 7 8

0.9622 0.1783 -0.3670 -1.0963 -0.3448 -0.2842 0.0178 0.9339

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.0325 0.6728 11.9 0.0000727 ***
x1 -3.5734 0.1955 -18.3 0.0000090 ***
x2 0.9672 0.0489 19.8 0.0000061 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.821 on 5 degrees of freedom
Multiple R-squared: 0.988, Adjusted R-squared: 0.983
F-statistic: 208 on 2 and 5 DF, p-value: 0.0000154

Solution

Before discussing the parameter let’s have a look at the residuals:

par(mfrow=c(1,2))
qqnorm(fit$residuals)
qqline(fit$residuals)
plot(fit$fitted.values, fit$residuals,

xlab="Fitted values", ylab="Residuals")
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The are no obvious structures in the residuals as a function of the fitted values and
also there does not seem be be serious departure from normality, but lets try to look
at the residuals as a function of the independent variables anyway

Solution

par(mfrow=c(1,2))
plot(D$x1, fit$residuals, xlab="x1", ylab="Residuals")
plot(D$x2, fit$residuals, xlab="x1", ylab="Residuals")
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the plot of the residuals as a function of x1 suggest that there could be a quadratic
dependence.
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Solution

Now include the quadratic dependence of x1

D$x3 <- D$x1^2
fit3 <- lm(y ~ x1 + x2 + x3, data=D)
summary(fit3)

Call:
lm(formula = y ~ x1 + x2 + x3, data = D)

Residuals:
1 2 3 4 5 6 7 8

0.0417 -0.0233 -0.0107 -0.0754 -0.0252 0.1104 0.0585 -0.0758

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.1007 0.1212 83.3 1.2e-07 ***
x1 -5.0024 0.0709 -70.5 2.4e-07 ***
x2 1.0006 0.0054 185.2 5.1e-09 ***
x3 0.1474 0.0070 21.1 3.0e-05 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.0867 on 4 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 1.26e+04 on 3 and 4 DF, p-value: 2.11e-08

we can see that all parameters are still significant, and we can do the residual anal-
ysis of the resulting model.

Solution

par(mfrow=c(2,2))
qqnorm(fit3$residuals)
qqline(fit3$residuals)
plot(fitted.values(fit3), fit3$residuals,

xlab="Fitted values", ylab="Residuals")
plot(D$x1, fit3$residuals, xlab="x1", ylab="Residuals")
plot(D$x2, fit3$residuals, xlab="x2", ylab="Residuals")
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There are no obvious structures left and there is no departure from normality, and
we can report the finally selected model as

Yi = β0 + β1x1,i + β2x2,i + β3x2
1,i + ε i, ε i ∼ (N(0, σ2),

with the parameters estimates given above.

d) Find the standard error for the line, and the confidence and prediction in-
tervals for the line for the points (min(x1), min(x2)), (x̄1, x̄2), (max(x1), max(x2)).



Chapter 6 6.3 MLR SIMULATION EXERCISE 18

Solution

The question is solved by

## New data
Dnew <- data.frame(x1=c(min(D$x1),mean(D$x1),max(D$x1)),

x2=c(min(D$x2),mean(D$x2),max(D$x2)),
x3=c(min(D$x1),mean(D$x1),max(D$x1))^2)

## standard error for the line
predict(fit3, newdata=Dnew, se=TRUE)$se

1 2 3
0.07306 0.04785 0.07985

## Confidence interval
predict(fit3, newdata=Dnew, interval="confidence")

fit lwr upr
1 9.248 9.045 9.451
2 8.587 8.454 8.720
3 11.538 11.317 11.760

## Prediction interval
predict(fit3, newdata=Dnew, interval="prediction")

fit lwr upr
1 9.248 8.934 9.563
2 8.587 8.312 8.862
3 11.538 11.211 11.866

e) Plot the observed values together with the fitted values (e.g. as a function
of x1).
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Solution

The question is solved by

plot(D$x1, D$y, pch=19, col=2, xlab="x1", ylab="y")
points(D$x1, fit3$fitted.values, pch="+", cex=2)
legend("topright", c("y1","fitted.values"), pch=c(19,3), col=c(2,1))
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Notice that we have an almost perfect fit when including x1, x2 and x2
1 in the model,

while neither x1 nor x2 alone could predict the outcomes.
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