Chapter 6

Multiple Linear Regression (solutions to exercises)

Contents

6	Multiple Linear Regression (solutions to exercises)									
	6.1	Nitrate concentration	3							
	6.2	Multiple linear regression model	6							
	6.3	MLR simulation exercise	11							

6.1 Nitrate concentration

Exercise 6.1 Nitrate concentration

In order to analyze the effect of reducing nitrate loading in a Danish fjord, it was decided to formulate a linear model that describes the nitrate concentration in the fjord as a function of nitrate loading, it was further decided to correct for fresh water runoff. The resulting model was

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2), \tag{6-1}$$

where Y_i is the natural logarithm of nitrate concentration, $x_{1,i}$ is the natural logarithm of nitrate loading, and $x_{2,i}$ is the natural logarithm of fresh water run off.

- a) Which of the following statements are assumed fulfilled in the usual multiple linear regression model?
 - 1) $\varepsilon_i = 0$ for all i = 1, ..., n, and β_i follows a normal distribution
 - 2) $E[x_1] = E[x_2] = 0$ and $V[\varepsilon_i] = \beta_1^2$
 - 3) $E[\varepsilon_i] = 0$ and $V[\varepsilon_i] = \beta_1^2$
 - 4) ε_i is normally distributed with constant variance, and ε_i and ε_j are independent for $i \neq j$
 - 5) $\varepsilon_i = 0$ for all i = 1, ..., n, and x_j follows a normal distribution for $j = \{1, 2\}$

Solution

- 1) ε_i follows a normal distribution with expectation equal zero, but the realizations are not zero, and further β_j is deterministic and hence it does not follow a distribution ($\hat{\beta}_j$ does), hence 1) is not correct
- 2)- 3) There are no assumptions on the expectation of x_j and the variance of ε equal σ^2 , not β_1^2 hence 2) and 3) are not correct
 - 4) Is correct, this is the usual assumption about the errors
 - 5) Is incorrect since ε_j follow a normal distribution, further the are no distributional assumptions on x_j . In fact we assume that x_j is known

The parameters in the model were estimated in R and the following results are available (slightly modified output from summary):

```
> summary(lm(y ~ x1 + x2))
Call:
lm(formula = y ~ x1 + x2)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.36500 0.22184 -10.661 < 2e-16
                       0.06169 7.720 3.25e-13
x1
             0.47621
             0.08269
x2
                       0.06977
                                  1.185
                                          0.237
_ _ _
Residual standard error: 0.3064 on 237 degrees of freedom
Multiple R-squared: 0.3438, Adjusted R-squared: 0.3382
F-statistic: 62.07 on 2 and 237 DF, p-value: < 2.2e-16
```

b) What are the parameter estimates for the model parameters ($\hat{\beta}_i$ and $\hat{\sigma}^2$) and how many observations are included in the estimation?

Solution

The number of degrees of freedom is equal n - (p + 1), and since the number of degrees of freedom is 237 and p = 2, we get n = 237 + 2 + 1 = 240. The parameters are given in the first column of the coefficient matrix, i.e.

$$\hat{\beta}_0 = -2.365$$
 (6-2)

$$\hat{\beta}_1 = 0.476$$
 (6-3)

$$\hat{\beta}_2 = 0.083$$
 (6-4)

and finally the estimated error variance is $\hat{\sigma}^2 = 0.3064^2$.

c) Calculate the usual 95% confidence intervals for the parameters (β_0 , β_1 , and β_2).

From Theorem 6.5 we know that the confidence intervals can be calculated by

$$\hat{\beta}_i \pm t_{1-\alpha/2} \, \hat{\sigma}_{\beta_i},$$

where $t_{1-\alpha/2}$ is based on 237 degrees of freedom, and with $\alpha = 0.05$, we get $t_{0.975} = 1.97$. The standard errors for the estimates is the second column of the coefficient matrix, and the confidence intervals become

$$\hat{\beta}_0 = -2.365 \pm 1.97 \cdot 0.222 \tag{6-5}$$

$$\hat{\beta}_1 = 0.467 \pm 1.97 \cdot 0.062 \tag{6-6}$$

$$\hat{\beta}_2 = 0.083 \pm 1.97 \cdot 0.070 \tag{6-7}$$

d) On level $\alpha = 0.05$ which of the parameters are significantly different from 0, also find the *p*-values for the tests used for each of the parameters?

Solution

We can see directly from the confidence intervals above that β_0 and β_1 are significantly different from zero (the confidence intervals does not cover zero), while we cannot reject that $\beta_2 = 0$ (the confidence interval cover zero). The *p*-values we can see directly in the R output: for β_0 is less than 10^{-16} and the *p*-value for β_1 is $3.25 \cdot 10^{-13}$, i.e. very strong evidence against the null hypothesis in both cases.

6.2 Multiple linear regression model

Exercise 6.2 Multiple linear regression model

The following measurements have been obtained in a study:

NT	1	0	0	4	-	(-	0	0	10	11	10	10
INO.	1	2	3	4	5	6	7	8	9	10	11	12	13
y	1.45	1.93	0.81	0.61	1.55	0.95	0.45	1.14	0.74	0.98	1.41	0.81	0.89
x_1	0.58	0.86	0.29	0.20	0.56	0.28	0.08	0.41	0.22	0.35	0.59	0.22	0.26
<i>x</i> ₂	0.71	0.13	0.79	0.20	0.56	0.92	0.01	0.60	0.70	0.73	0.13	0.96	0.27
No.	14	15	16	17	18	19	20	21	22	23	24	25	
у	0.68	1.39	1.53	0.91	1.49	1.38	1.73	1.11	1.68	0.66	0.69	1.98	
x_1	0.12	0.65	0.70	0.30	0.70	0.39	0.72	0.45	0.81	0.04	0.20	0.95	
<i>x</i> ₂	0.21	0.88	0.30	0.15	0.09	0.17	0.25	0.30	0.32	0.82	0.98	0.00	

It is expected that the response variable y can be described by the independent variables x_1 and x_2 . This imply that the parameters of the following model should be estimated and tested

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2).$$

a) Calculate the parameter estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \text{ and } \hat{\sigma}^2)$, in addition find the usual 95% confidence intervals for β_0, β_1 , and β_2 . You can copy the following lines to R to load the data:

D <- data.frame(x1=c(0.58, 0.86, 0.29, 0.20, 0.56, 0.28, 0.08, 0.41, 0.22, 0.35, 0.59, 0.22, 0.26, 0.12, 0.65, 0.70, 0.30, 0.70, 0.39, 0.72, 0.45, 0.81, 0.04, 0.20, 0.95), x2=c(0.71, 0.13, 0.79, 0.20, 0.56, 0.92, 0.01, 0.60, 0.70, 0.73, 0.13, 0.96, 0.27, 0.21, 0.88, 0.30, 0.15, 0.09, 0.17, 0.25, 0.30, 0.32, 0.82, 0.98, 0.00), y=c(1.45, 1.93, 0.81, 0.61, 1.55, 0.95, 0.45, 1.14, 0.74, 0.98, 1.41, 0.81, 0.89, 0.68, 1.39, 1.53, 0.91, 1.49, 1.38, 1.73, 1.11, 1.68, 0.66, 0.69, 1.98)

The question is answered by R. Start by loading data into R and estimate the parameters in R

```
fit <- lm(y \sim x1 + x2, data=D)
summary(fit)
Call:
lm(formula = y ~ x1 + x2, data = D)
Residuals:
  Min 1Q Median 3Q Max
-0.155 -0.078 -0.020 0.050 0.301
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.43355 0.06598 6.57 1.3e-06 ***
x1
          1.65299 0.09525 17.36 2.5e-14 ***
x2
           0.00394 0.07485 0.05 0.96
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.113 on 22 degrees of freedom
Multiple R-squared: 0.94, Adjusted R-squared: 0.934
F-statistic: 172 on 2 and 22 DF, p-value: 3.7e-14
```

Solution

The parameter estimates are given in the first column of the coefficient matrix, i.e.

$$\hat{\beta}_0 = 0.434,$$

 $\hat{\beta}_1 = 1.653,$
 $\hat{\beta}_2 = 0.0039,$

and the error variance estimate is $\hat{\sigma}^2 = 0.11^2$. The confidence intervals can either be calculated using the second column of the coefficient matrix, and the value of $t_{0.975}$ (with degrees of freedom equal 22), or directly in R:

b) Still using confidence level $\alpha = 0.05$ reduce the model if appropriate.

Solution

Since the confidence interval for β_2 cover zero (and the *p*-value is much larger than 0.05), the parameter should be removed from the model to get the simpler model

 $y_i = \beta_0 + \beta_1 x_1 + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2),$

the parameter estimates in the simpler model are

```
fit <- lm(y ~ x1, data=D)
summary(fit)
Call:
lm(formula = y ~ x1, data = D)
Residuals:
   Min 1Q Median 3Q Max
-0.1563 -0.0763 -0.0215 0.0516 0.2999
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4361 0.0440 9.91 9.0e-10 ***
       1.6512 0.0871 18.96 1.5e-15 ***
x1
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.11 on 23 degrees of freedom
Multiple R-squared: 0.94, Adjusted R-squared: 0.937
F-statistic: 360 on 1 and 23 DF, p-value: 1.54e-15
```

and both parameters are now significant.

c) Carry out a residual analysis to check that the model assumptions are fulfilled.

Solution

We are interested in inspecting a q-q plot of the residuals and a plot of the residuals as a function of the fitted values

there are no strong evidence against the assumptions, the qq-plot is are a straight line and the are no obvious dependence between the residuals and the fitted values, and we conclude that the assumptions are fulfilled.

d) Make a plot of the fitted line and 95% confidence and prediction intervals of the line for $x_1 \in [0, 1]$ (it is assumed that the model was reduced above).

6.3 MLR simulation exercise

Exercise 6.3 MLR simulation exercise

The following measurements have been obtained in a study:

Nr.	1	2	3	4	5	6	7	8
y	9.29	12.67	12.42	0.38	20.77	9.52	2.38	7.46
x_1	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
<i>x</i> ₂	4.00	12.00	16.00	8.00	32.00	24.00	20.00	28.00

a) Plot the observed values of y as a function of x_1 and x_2 . Does it seem reasonable that either x_1 or x_2 can describe the variation in y? You may copy the following lines into R to load the data

```
D <- data.frame(
 y=c(9.29,12.67,12.42,0.38,20.77,9.52,2.38,7.46),
 x1=c(1.00,2.00,3.00,4.00,5.00,6.00,7.00,8.00),
 x2=c(4.00,12.00,16.00,8.00,32.00,24.00,20.00,28.00))
```

Solution

The data is plotted with

par(mfrow=c(1,2))
plot(D\$x1, D\$y, xlab="x1", ylab="y")
plot(D\$x2, D\$y, xlab="x1", ylab="y")

There does not seem to be a strong relation between y and x_1 or x_2 .

b) Estimate the parameters for the two models

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2),$$

and

$$Y_i = \beta_0 + \beta_1 x_{2,i} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2),$$

and report the 95% confidence intervals for the parameters. Are any of the parameters significantly different from zero on a 5% confidence level?

The models are fitted with

since all confidence intervals cover zero we cannot reject that the parameters are in fact zero, and we would conclude neither x_1 nor x_2 explain the variations in y.

c) Estimate the parameters for the model

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i, \quad \varepsilon_i \sim (N(0, \sigma^2)),$$
 (6-8)

and go through the steps of Method 6.16 (use confidence level 0.05 in all tests).

The model is fitted with

```
fit <- lm(y ~ x1 + x2, data=D)</pre>
summary(fit)
Call:
lm(formula = y ~ x1 + x2, data = D)
Residuals:
             2
                            4
                                5
     1
                 3
                                        6
                                                 7
                                                          8
 0.9622 0.1783 -0.3670 -1.0963 -0.3448 -0.2842 0.0178 0.9339
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.0325 0.6728 11.9 0.0000727 ***
           -3.5734 0.1955 -18.3 0.0000090 ***
x1
x2
            0.9672
                      0.0489 19.8 0.0000061 ***
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.821 on 5 degrees of freedom
Multiple R-squared: 0.988, Adjusted R-squared: 0.983
F-statistic: 208 on 2 and 5 DF, p-value: 0.0000154
```

Solution

Before discussing the parameter let's have a look at the residuals:

The are no obvious structures in the residuals as a function of the fitted values and also there does not seem be be serious departure from normality, but lets try to look at the residuals as a function of the independent variables anyway

Solution

```
par(mfrow=c(1,2))
plot(D$x1, fit$residuals, xlab="x1", ylab="Residuals")
plot(D$x2, fit$residuals, xlab="x1", ylab="Residuals")
```


the plot of the residuals as a function of x_1 suggest that there could be a quadratic dependence.

Now include the quadratic dependence of x_1

```
D$x3 <- D$x1^2
fit3 <- lm(y ~ x1 + x2 + x3, data=D)
summary(fit3)
Call:
lm(formula = y ~ x1 + x2 + x3, data = D)
Residuals:
                  2
                                      4
                                                 5
       1
                          3
                                                         6
                                                                   7
                                                                               8
 0.0417 -0.0233 -0.0107 -0.0754 -0.0252 0.1104 0.0585 -0.0758
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.1007 0.1212 83.3 1.2e-07 ***
               -5.0024
                              0.0709 -70.5 2.4e-07 ***
x1

        -3.0024
        0.0709
        -70.3
        2.4e-07
        ***

        1.0006
        0.0054
        185.2
        5.1e-09
        ***

        0.1474
        0.0070
        21.1
        3.0e-05
        ***

x2
xЗ
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0867 on 4 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
                                                              1
F-statistic: 1.26e+04 on 3 and 4 DF, p-value: 2.11e-08
```

we can see that all parameters are still significant, and we can do the residual analysis of the resulting model.

Solution

There are no obvious structures left and there is no departure from normality, and we can report the finally selected model as

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{1,i}^2 + \varepsilon_i, \quad \varepsilon_i \sim (N(0, \sigma^2)),$$

with the parameters estimates given above.

d) Find the standard error for the line, and the confidence and prediction intervals for the line for the points $(\min(x_1), \min(x_2)), (\bar{x}_1, \bar{x}_2), (\max(x_1), \max(x_2)).$

The question is solved by

```
## New data
Dnew <- data.frame(x1=c(min(D$x1),mean(D$x1),max(D$x1)),</pre>
                  x2=c(min(D$x2),mean(D$x2),max(D$x2)),
                  x3=c(min(D$x1),mean(D$x1),max(D$x1))^2)
## standard error for the line
predict(fit3, newdata=Dnew, se=TRUE)$se
             2
                     3
      1
0.07306 0.04785 0.07985
## Confidence interval
predict(fit3, newdata=Dnew, interval="confidence")
     fit lwr
                  upr
1 9.248 9.045 9.451
2 8.587 8.454 8.720
3 11.538 11.317 11.760
## Prediction interval
predict(fit3, newdata=Dnew, interval="prediction")
    fit lwr upr
1 9.248 8.934 9.563
2 8.587 8.312 8.862
3 11.538 11.211 11.866
```

e) Plot the observed values together with the fitted values (e.g. as a function of *x*₁).

The question is solved by

```
plot(D$x1, D$y, pch=19, col=2, xlab="x1", ylab="y")
points(D$x1, fit3$fitted.values, pch="+", cex=2)
legend("topright", c("y1","fitted.values"), pch=c(19,3), col=c(2,1))
```


Notice that we have an almost perfect fit when including x_1 , x_2 and x_1^2 in the model, while neither x_1 nor x_2 alone could predict the outcomes.