
Chapter 4 1

Chapter 4

Statistics by Simulation (solutions to
exercises)

Chapter 4 CONTENTS 2

Contents

4 Statistics by Simulation (solutions to exercises) 1
4.1 Reliability: System lifetime (simulation as a computation tool) . . 4
4.2 Basic bootstrap CI . 10
4.3 Various bootstrap CIs . 12
4.4 Two-sample TV data . 19
4.5 Non-linear error propagation . 22

Chapter 4 CONTENTS 3

Import Python packages

Import all needed python packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats
import statsmodels.formula.api as smf
import statsmodels.api as sm

Chapter 4 4.1 RELIABILITY: SYSTEM LIFETIME (SIMULATION AS A
COMPUTATION TOOL) 4

4.1 Reliability: System lifetime (simulation as a
computation tool)

Exercise 4.1 Reliability: System lifetime (simulation as a computa-
tion tool)

A system consists of three components A, B and C serially connected, such that
A is positioned before B, which is again positioned before C. The system will
be functioning only so long as A, B and C are all functioning. The lifetime in
months of the three components are assumed to follow exponential distribu-
tions with means: 2 months, 3 months and 5 months, respectively (hence there
are three random variables, XA, XB and XC with exponential distributions with
λA = 1/2, λB = 1/3 and λC = 1/5 resp.). A little Python-help: You will proba-
bly need (or at least it would help) to put three variables together to make e.g.
a k × 3-matrix – this can be done by the cbind function:

x = np.column_stack((xA,xB,xC))

And just as an example, in Python we can easily compute e.g. the mean of the
three values for each of all the k rows of this matrix by using the "axis" argument
in the np.mean function. This argument specifies the axis along which the means
are computed, so for axis=1, we take the mean for the three columns in the x.
Many functions in Python have this argument, so it is a good idea to get familiar
with it. Example for mean:

simmeans = np.mean(x, axis=1)

a) Generate, by simulation, a large number (at least 1000 – go for 10000 or
100000 if your computer is up for it) of system lifetimes (hint: consider
how the random variable Y = System lifetime is a function of the three
X-variables: is it the sum, the mean, the median, the minimum, the maxi-
mum, the range or something even different?).

Chapter 4 4.1 RELIABILITY: SYSTEM LIFETIME (SIMULATION AS A
COMPUTATION TOOL) 5

Solution

Note that the lifetime can be seen as the minimal value of the three random compo-
nent lifetimes:

"Lifetime" = min(XA, XB, XC).

First, note that the generated solution below has been generated with this seed in
order to get the same result each time. Note, that when a simulation analysis is
carried out, this number should only be set once and set randomly (potentially it
is possible to find a seed (see Remark 2.12) that gives a rare simulation result and
thus showing a “wrong” result, however if k is high enough this is very hard). The
solution below has been generated with the following seed

You might want to set the seed to achieve a particular result
np.random.seed(82719)

The following Python-code generates 10.000 simulated system lifetimes:

Chapter 4 4.1 RELIABILITY: SYSTEM LIFETIME (SIMULATION AS A
COMPUTATION TOOL) 6

Number of simulations
k = 10000
Generating k component A lifetimes
xA = np.random.exponential(scale=2, size=k)
Checking the mean of these
print(np.mean(xA))

2.0035078916253752

Generating k component B lifetimes
xB = np.random.exponential(scale=3, size=k)
Checking the mean of these
print(np.mean(xB))

3.0264519724715777

Generating k component C lifetimes
xC = np.random.exponential(scale=5, size=k)
Checking the mean of these
print(np.mean(xC))

5.047803906911606

Putting these three sets of k lifetimes together
into a single k-by-3 matrix
x = np.column_stack((xA, xB, xC))

Finding the minimum value of the three components in each of the k
situations
lifetimes = np.min(x, axis=1)

Chapter 4 4.1 RELIABILITY: SYSTEM LIFETIME (SIMULATION AS A
COMPUTATION TOOL) 7

Solution

Let us have a look at these simulated lifetimes:

Histogram of the simulated lifetimes
plt.hist(lifetimes, bins=30, color=’blue’, edgecolor=’black’)
plt.title(’Simulated lifetimes’)
plt.show()

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

Simulated lifetimes

b) Estimate the mean system lifetime.

Solution

The estimated mean lifetime
print(np.mean(lifetimes))

0.9880015386365172

c) Estimate the standard deviation of system lifetimes.

Chapter 4 4.1 RELIABILITY: SYSTEM LIFETIME (SIMULATION AS A
COMPUTATION TOOL) 8

Solution

The estimated std. dev. of the lifetime
print(np.std(lifetimes,ddof=1))

0.9959225338611547

d) Estimate the probability that the system fails within 1 month.

Solution

We need to count how often the lifetimes are smaller than or equal to 1 month – this
can in Python be achieved by use of a logical operator:

The fraction of times the simulated lifetime was below or equal 1
print(np.mean(lifetimes <= 1))

0.6391

or
print(np.sum(lifetimes <= 1)/k)

0.6391

In Python FALSE is a 0 and a TRUE is a 1 - this is why we can simply apply the mean
function directly on the vector of TRUES and FALSES like this.

e) Estimate the median system lifetime

Chapter 4 4.1 RELIABILITY: SYSTEM LIFETIME (SIMULATION AS A
COMPUTATION TOOL) 9

Solution

The estimated median lifetime
print(np.median(lifetimes))

0.6878542614451192

f) Estimate the 10th percentile of system lifetimes

Solution

The estimated 10% quantile
print(np.quantile(lifetimes, 0.1))

0.10367217182567331

g) What seems to be the distribution of system lifetimes? (histogram etc)

Solution

We already made the histogram above. It appears that the minimum of the three
exponential variables also has a distribution that looks like an exponential. In fact,
there is a theoretical result (beoynd the syllabus of this course) that states that the
distribution of the minimum of these three exponential distributions is again an ex-
ponential distribution but now with

λmin = λA + λB + λC = 1/2 + 1/3 + 1/5 = 31/30.

Note how this matches nicely with the found mean above!

Chapter 4 4.2 BASIC BOOTSTRAP CI 10

4.2 Basic bootstrap CI

Exercise 4.2 Basic bootstrap CI

(Can be handled without using R) The following measurements were given for
the cylindrical compressive strength (in MPa) for 11 prestressed concrete beams:

38.43, 38.43, 38.39, 38.83, 38.45, 38.35, 38.43, 38.31, 38.32, 38.48, 38.50.

1000 bootstrap samples (each sample hence consisting of 11 measurements)
were generated from these data, and the 1000 bootstrap means were arranged
on order. Refer to the smallest as x̄∗(1), the second smallest as x̄∗(2) and so on,
with the largest being x̄∗(1000). Assume that

x̄∗(25) = 38.3818,

x̄∗(26) = 38.3818,

x̄∗(50) = 38.3909,

x̄∗(51) = 38.3918,

x̄∗(950) = 38.5218,

x̄∗(951) = 38.5236,

x̄∗(975) = 38.5382,

x̄∗(976) = 38.5391.

a) Compute a 95% bootstrap confidence interval for the mean compressive
strength.

Solution

Looking at Method box 4.10, we see that we need to find the 2.5%, and 97.5% quan-
tiles of the 1000 bootstrap samples. According to the rule for finding the 2.5% quan-
tile this should be the average of the 25th andn the 26th observation:

q0.025 =
x̄∗(25) + x̄∗(26)

2
= 38.3818,

Chapter 4 4.2 BASIC BOOTSTRAP CI 11

and similarly

q0.975 =
x̄∗(975) + x̄∗(976)

2
=

38.5382 + 38.5391
2

= 38.5387,

and hence the 95% bootstrap confidence band is:

[38.3818; 38.5387].

b) Compute a 90% bootstrap confidence interval for the mean compressive
strength.

Solution

As above we get:

q0.05 =
x̄∗(50) + x̄∗(51)

2
=

38.3909 + 38.3919
2

= 38.3914,

and similarly:

q0.95 =
x̄∗(950) + x̄∗(951)

2
=

38.5218 + 38.5236
2

= 38.5227,

and hence the 90% bootstrap confidence band is:

[38.3914; 38.5227].

Chapter 4 4.3 VARIOUS BOOTSTRAP CIS 12

4.3 Various bootstrap CIs

Exercise 4.3 Various bootstrap CIs

Consider the data from the exercise above. These data are entered into Python
as:

x = np.array([38.43, 38.43, 38.39, 38.83, 38.45, 38.35,
38.43, 38.31, 38.32, 38.48, 38.50])

Now generate k = 1000 bootstrap samples and compute the 1000 means (go
higher if your computer is fine with it)

a) What are the 2.5%, and 97.5% quantiles (so what is the 95% confidence
interval for µ without assuming any distribution)?

Solution

The solution below has been generated with the following seed (see Remark 2.12)

You might want to set the seed to achieve a particular result
np.random.seed(6287)

x = np.array([38.43, 38.43, 38.39, 38.83, 38.45, 38.35,
38.43, 38.31, 38.32, 38.48, 38.50])

k = 10000
n = len(x)
simsamples = np.random.choice(x, (n, k), replace=True)
simmeans = np.mean(simsamples, axis=0)
print(np.quantile(simmeans, [0.025, 0.975]))

[38.381 38.536]

Chapter 4 4.3 VARIOUS BOOTSTRAP CIS 13

plt.hist(simmeans, bins=30, edgecolor = ’black’)
plt.title(’Histogram of simulated means’)
plt.xlabel(’Mean’)
plt.show()

38.35 38.40 38.45 38.50 38.55 38.60 38.65
Mean

0

200

400

600

800

1000

Histogram of simulated means

b) Find the 95% confidence interval for µ by the parametric bootstrap as-
suming the normal distribution for the observations. Compare with the
classical analytic approach based on the t-distribution from Chapter 2.

Chapter 4 4.3 VARIOUS BOOTSTRAP CIS 14

Solution

First we do the parametric bootstrap:

k = 10000
n = len(x)
simsamples = np.random.normal(np.mean(x), np.std(x,ddof=1), (n, k))
simmeans = np.mean(simsamples, axis=0)
print(np.quantile(simmeans, [0.025, 0.975]))

[38.363 38.530]

Histogram
plt.hist(simmeans, bins=30, edgecolor = ’black’)
plt.title(’Histogram of simulated means’)
plt.xlabel(’Mean’)
plt.show()

38.25 38.30 38.35 38.40 38.45 38.50 38.55 38.60
Mean

0

200

400

600

800

1000

1200
Histogram of simulated means

And the classic t-based approach (without simulation):

Chapter 4 4.3 VARIOUS BOOTSTRAP CIS 15

t_stat,p_val = stats.ttest_1samp(x, 38.5)
print(t_stat)

-1.239610578766898

print(p_val)

0.24342150717016434

interval directly
(CI_low,CI_high) = stats.t.interval(0.95, len(x)-1, loc=np.mean(x),
scale=stats.sem(x))
print(CI_low,CI_high)

38.35249805615088 38.54204739839457

c) Find the 95% confidence interval for µ by the parametric bootstrap as-
suming the log-normal distribution for the observations. (Help: To use
the np.random.lognormal function to simulate the log-normal distribu-
tion, we face the challenge that we need to specify the mean and standard
deviation on the log-scale and not on the raw scale, so compute mean and
standard deviation for log-transformed data for this Python-function)

Chapter 4 4.3 VARIOUS BOOTSTRAP CIS 16

Solution

We do the parametric bootstrap using the log-normal distribution.

k = 10000
n = len(x)
simsamples = np.random.lognormal(np.mean(np.log(x)),
np.std(np.log(x),ddof=1), (n, k))
simmeans = np.mean(simsamples, axis=0)
print(np.quantile(simmeans, [0.025, 0.975]))

[38.365 38.529]

Histogram
plt.hist(simmeans, bins=30, edgecolor = ’black’)
plt.title(’Histogram of simulated means’)
plt.xlabel(’Mean’)
plt.show()

38.30 38.35 38.40 38.45 38.50 38.55 38.60
Mean

0

200

400

600

800

1000

Histogram of simulated means

d) Find the 95% confidence interval for the lower quartile Q1 by the paramet-
ric bootstrap assuming the normal distribution for the observations.

Chapter 4 4.3 VARIOUS BOOTSTRAP CIS 17

Solution

We do the parametric bootstrap of lower quartile Q1 using the normal distribution
by first making a Q1-function in Python, and then the usual stuff:

k = 10000
n = len(x)
simsamples = np.random.normal(np.mean(x),np.std(x,ddof=1), (n, k))
simQ1s = np.quantile(simsamples, 0.25, axis=0)
print(np.quantile(simQ1s, [0.025, 0.975]))

[38.258 38.466]

Histogram
plt.hist(simQ1s, bins=30, edgecolor = ’black’)
plt.title(’Histogram of simulated Q1s’)
plt.xlabel(’Q1’)
plt.show()

38.1 38.2 38.3 38.4 38.5
Q1

0

200

400

600

800

1000

1200
Histogram of simulated Q1s

e) Find the 95% confidence interval for the lower quartile Q1 by the non-
parametric bootstrap (so without any distributional assumptions)

Chapter 4 4.3 VARIOUS BOOTSTRAP CIS 18

Solution

We simply substitute the sampling line with the non-parametric version:

k = 10000
n = len(x)
simsamples = np.random.choice(x, (n, k), replace=True)
simQ1s = np.quantile(simsamples, 0.25, axis=0)
print(np.quantile(simQ1s, [0.025, 0.975]))

[38.315 38.430]

Chapter 4 4.4 TWO-SAMPLE TV DATA 19

4.4 Two-sample TV data

Exercise 4.4 Two-sample TV data

A TV producer had 20 consumers evaluate the quality of two different TV flat
screens - 10 consumers for each screen. A scale from 1 (worst) up to 5 (best)
were used and the following results were obtained:

TV screen 1 TV screen 2
1 3
2 4
1 2
3 4
2 2
1 3
2 2
3 4
1 3
1 2

a) Compare the two means without assuming any distribution for the two
samples (non-parametric bootstrap confidence interval and relevant hy-
pothesis test interpretation).

Chapter 4 4.4 TWO-SAMPLE TV DATA 20

Solution

The solution below has been generated with the following seed (see Remark 2.12)

You might want to set the seed to achieve a particular result
np.random.seed(98273)

x1 = np.array([1, 2, 1, 3, 2, 1, 2, 3, 1, 1])
x2 = np.array([3, 4, 2, 4, 2, 3, 2, 4, 3, 2])
Number of simulated (bootstrapped) samples
k = 10000
n = len(x1) # same as len(x2)
Simulated samples of TV1 and TV2 groups
simx1samples = np.random.choice(x1, (n, k), replace=True)
simx2samples = np.random.choice(x2, (n, k), replace=True)
simmeandifs = np.mean(simx1samples, axis=0) - np.mean(simx2samples,
axis=0)
Confidence interval
ci = np.quantile(simmeandifs, [0.025, 0.975])
print(ci)

[-1.900 -0.500]

We reject the null hypothesis of µ1 = µ2, since zero is not included in the CI of the
differences.

b) Compare the two means assuming normal distributions for the two sam-
ples - without using simulations (or rather: assuming/hoping that the
sample sizes are large enough to make the results approximately valid).

Chapter 4 4.4 TWO-SAMPLE TV DATA 21

Solution

t_stat, p_val = stats.ttest_ind(x1, x2)
print(t_stat)

-3.157408869505305

print(p_val)

0.005449057981469947

We reject the null hypothesis of µ1 = µ2.

c) Compare the two means assuming normal distributions for the two sam-
ples - simulation based (parametric bootstrap confidence interval and rel-
evant hypothesis test interpretation – in spite of the obviously wrong as-
sumption).

Solution

simx1samples = np.random.normal(np.mean(x1), np.std(x1,ddof=1), (n, k))
simx2samples = np.random.normal(np.mean(x2), np.std(x2,ddof=1), (n, k))
simmeandifs = np.mean(simx1samples, axis=0) - np.mean(simx2samples,
axis=0)
Confidence interval
print(np.quantile(simmeandifs, [0.025, 0.975]))

[-1.948 -0.442]

We reject the null hypothesis of µ1 = µ2.

Chapter 4 4.5 NON-LINEAR ERROR PROPAGATION 22

4.5 Non-linear error propagation

Exercise 4.5 Non-linear error propagation

The pressure P, and the volume V of one mole of an ideal gas are related by
the equation PV = 8.31T, when P is measured in kilopascals, T is measured in
kelvins, and V is measured in liters.

a) Assume that P is measured to be 240.48 kPa and V to be 9.987 L with
known measurement errors (given as standard deviations): 0.03 kPa and
0.002 L. Estimate T and find the uncertainty in the estimate.

Solution

This is a almost direct copy of the rectangle example (A = XY) (Example 4.5), since
T = PV/8.31, so since: To use the approximate error propagation rule, we must
differentiate the function f (x, y) = xy/8.31 with respect to both x and y:

∂ f
∂x

= y/8.31
∂ f
∂y

= x/8.31.

We get the result: T̂ = 240.48 · 9.987/8.31 = 289.0101, and the uncertainty is:

σT̂ =
√

9.9872 × 0.032 + 240.482 × 0.0022/8.31 = 0.0682.

b) Assume that P is measured to be 240.48kPa and T to be 289.12K with
known measurement errors (given as standard deviations): 0.03kPa and
0.02K. Estimate V and find the uncertainty in the estimate.

Chapter 4 4.5 NON-LINEAR ERROR PROPAGATION 23

Solution

V = f (P, T) = 8.31T/P.

So:

∂ f
∂T

= 8.31/P
∂ f
∂P

= −8.31
T
P2 ,

and hence:

V̂ = 8.31 · 289.12/240.48 = 9.9908.

and

σV̂ = 8.31
√

1/240.482 × 0.022 + 289.122/240.484 × 0.032 = 0.00143.

c) Assume that V is measured to be 9.987 L and T to be 289.12 K with known
measurement errors (given as standard deviations): 0.002 L and 0.02 K.
Estimate P and find the uncertainty in the estimate.

Solution

Since

P = f (V, T) = 8.31T/V,

we can simply change the roles of P and V in the above and find similarly

∂ f
∂T

= 8.31/V
∂ f
∂V

= −8.31
T

V2 ,

and hence

P̂ = 8.31 · 289.12/9.987 = 240.5715,

and

σP̂ = 8.31
√

1/9.9872 × 0.022 + 289.122/9.9874 × 0.0022 = 0.0510.

Chapter 4 4.5 NON-LINEAR ERROR PROPAGATION 24

d) Try to answer one or more of these questions by simulation (assume that
the errors are normally distributed).

Solution

Let’s look at 3. The following Python-code will do the job:

The solution below has been generated with the following seed (see Remark 2.12)

You might want to set the seed to achieve a particular result
np.random.seed(28973)

k = 10000
Vs = np.random.normal(loc=9.987, scale=0.002,size=k)
Ts = np.random.normal(loc=289.12,scale=0.02, size=k)
Ps = 8.31*Ts/Vs
print(np.std(Ps, ddof=1))

0.05119900268933971

Rerunning this a few times will show that 0.051 is the proper result. This additional
re-running gives a feeling of the error in the simulation - rather small here. Alterna-
tively increase k.

Similarly 2. can be handled as:

k = 10000
Ps = np.random.normal(240.28, 0.03, k)
Ts = np.random.normal(loc=289.12,scale=0.02, size=k)
Vs = 8.31*Ts/Ps
print(np.std(Vs, ddof=1))

0.0014176700426727481

Providing again basically the same answer as above: 0.0014.

	4 Statistics by Simulation (solutions to exercises)
	4.1 Reliability: System lifetime (simulation as a computation tool)
	4.2 Basic bootstrap CI
	4.3 Various bootstrap CIs
	4.4 Two-sample TV data
	4.5 Non-linear error propagation

