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5.1 Plastic film folding machine

Exercise 5.1 Plastic film folding machine

On a machine that folds plastic film the temperature may be varied in the range
of 130-185 °C. For obtaining, if possible, a model for the influence of tempera-
ture on the folding thickness, n = 12 related set of values of temperature and
the fold thickness were measured that is illustrated in the following figure:
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a) Determine by looking at the figure, which of the following sets of esti-
mates for the parameters in the usual regression model is correct:

1) β̂0 = 0, β̂1 = −0.9, σ̂ = 36

2) β̂0 = 0, β̂1 = 0.9, σ̂ = 3.6

3) β̂0 = 252, β̂1 = −0.9, σ̂ = 3.6

4) β̂0 = −252, β̂1 = −0.9, σ̂ = 36

5) β̂0 = 252, β̂1 = −0.9, σ̂ = 36

Solution

First of all, the only possible intercept (β̂0) among the ones given in the answers is
252. And then the slope estimate of -0.9 in these two options looks reasonable. We
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just need to decide on whether the estimated standard deviation of the error se = σ̂

is 3.6 or 36. From the figure it is clear that the points are NOT having an average
vertical distance to the line in the size of 36, so 3.6 must be the correct number and
hence the correct answer is:

3 ) β̂0 = 252, β̂1 = −0.9, σ̂ = 3.6

b) What is the only possible correct answer:

1) The proportion of explained variation is 50% and the correlation is
0.98

2) The proportion of explained variation is 0% and the correlation is
−0.98

3) The proportion of explained variation is 96% and the correlation is
−1

4) The proportion of explained variation is 96% and the correlation is
0.98

5) The proportion of explained variation is 96% and the correlation is
−0.98

Solution

The proportion of variation explained must be pretty high, so 0 can be ruled out.
Answer 1 and 4 is also ruled out since the correlation clearly is negative. This also
narrows the possibilities down to answer 3 and 5. And since the correlation is NOT
exactly -1 (in which case the observations would be exactly on the line), the correct
answer is:

5) The proportion of explained variation is 96% and the correlation is −0.98
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5.2 Linear regression life time model

Exercise 5.2 Linear regression life time model

A company manufactures an electronic device to be used in a very wide tem-
perature range. The company knows that increased temperature shortens the
life time of the device, and a study is therefore performed in which the life time
is determined as a function of temperature. The following data is found:

Temperature in Celcius (t) 10 20 30 40 50 60 70 80 90
Life time in hours (y) 420 365 285 220 176 117 69 34 5

a) Calculate the 95% confidence interval for the slope in the usual linear re-
gression model, which expresses the life time as a linear function of the
temperature.

Solution

Either one could do all the regression computations to find the β̂1 = −5.3133 and
then subsequently use the formula for the confidence interval for β1 in Method 5.15

β̂1 ± t1−α/2 · σ̂β1 = β̂1 ± tα/2 · σ̂
√

1
∑n

i=1(xi − x̄)2 ,

or just run lm in R to find:
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D <- data.frame(t=c(10,20,30,40,50,60,70,80,90),
y=c(420,365,285,220,176,117,69,34,5))

fit <- lm(y ~ t, data=D)
summary(fit)

Call:
lm(formula = y ~ t, data = D)

Residuals:
Min 1Q Median 3Q Max

-21.02 -12.62 -9.16 17.71 29.64

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 453.556 14.394 31.5 8.4e-09 ***
t -5.313 0.256 -20.8 1.5e-07 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 19.8 on 7 degrees of freedom
Multiple R-squared: 0.984, Adjusted R-squared: 0.982
F-statistic: 432 on 1 and 7 DF, p-value: 0.000000151

and use the knowledge of the information in the R-output that wht is know as the
"standard error for the slope” can be directly read off as

σ̂β1 = σ̂

√
1

∑n
i=1(xi − x̄)2 = 0.2558,

and t0.025(7) = 2.364 - in R:

qt(.975,7)

[1] 2.365

to get −5.31± 2.365 · 0.2558, or in R:

-5.31+c(-1,1)*qt(.975,7)*0.2558

[1] -5.915 -4.705

b) Can a relation between temperature and life time be documented on level
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5%?

Solution

Since the confidence interval does not include 0, it can be documented that there
is a relationship between life time and temperature, also the p-value is 1.5 · 10−7 <

0.05 = α, which also give strong evidence against the null-hypothesis.
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5.3 Yield of chemical process

Exercise 5.3 Yield of chemical process

The yield y of a chemical process is a random variable whose value is considered
to be a linear function of the temperature x. The following data of correspond-
ing values of x and y is found:

Temperature in °C (x) 0 25 50 75 100
Yield in grams (y) 14 38 54 76 95

The average and standard deviation of temperature and yield are

x̄ = 50, sx = 39.52847, ȳ = 55.4, sy = 31.66702,

In the exercise the usual linear regression model is used

Yi = β0 + β1xi + εi, εi ∼ N(0, σ2
ε ), i = 1, . . . , 5

a) Can a significant relationship between yield and temperature be docu-
mented on the usual significance level α = 0.05?
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Solution

It could most easily be solved by running the regression in R as:

D <- data.frame(x=c(0,25,50,75,100),
y=c(14,38,54,76,95))

fit <- lm(y ~ x, data=D)
summary(fit)

Call:
lm(formula = y ~ x, data = D)

Residuals:
1 2 3 4 5

-1.4 2.6 -1.4 0.6 -0.4

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.4000 1.4967 10.3 0.002 **
x 0.8000 0.0244 32.7 0.000063 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.93 on 3 degrees of freedom
Multiple R-squared: 0.997, Adjusted R-squared: 0.996
F-statistic: 1.07e+03 on 1 and 3 DF, p-value: 0.0000627

Alternatively one could use hand calculations and use the formula in Theorem 5.12
for the t-test of the null hypothesis: H0 : β1 = 0.

The relevant test statistic and p-value can be read off in the R output as 32.7 and
0.000063. So the answer is:

Yes, as the relevant test statistic and p-value are resp. 32.7 and 0.00006 < 0.05 = α.

b) Give the 95% confidence interval of the expected yield at a temperature of
xnew = 80 °C.
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Solution

We use the formula in Equation (5-59) for the confidence limit of the line (the ex-
pected value of Yi for a value xnew):

β̂0 + β̂1xnew ± t1−α/2σ̂

√
1
n

+ (xnew − x̄)2

Sxx
,

and we have to compute β̂0, β̂1 and se either by hand OR in R as above:

β̂0 = 15.4, β̂1 = 0.8, σ̂ = 1.932.

So the confidence interval becomes

(15.4 + 0.8 · 80)± 3.182 · 1.932

√
1
5

+ (80− 50)2

6250
,

since

s2
x = 1

n− 1

n

∑
i=1

(xi − x̄)2 = 1
n− 1

Sxx ⇔

Sxx = (n− 1)s2
x = 4 · 39.5282 = 6250.

Thus the answer is
79.40± 3.61 = [75.79, 83.01].

In R this could be by:

predict(fit, newdata=data.frame(x=80), interval="confidence",
level=0.95)

fit lwr upr
1 79.4 75.79 83.01

c) What is the upper quartile of the residuals?

Solution

The five residuals become: -1.4, 2.6, -1.4, 0.6 og -0.4.

We use the basic definition of finding a quantile (from Definition 1.7) and the upper
quartile is q0.75 (see Definition 1.8). We set n = 5, p = 0.75, so

np = 3.75
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So the upper quartile is the 4th observation in the ordered sequence:

−1.4,−1.4,−0.4, 0.6, 2.6.

This is also found in the summary() output above under

Residuals:
1 2 3 4 5

-1.4 2.6 -1.4 0.6 -0.4

So the answer is: 0.6.
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5.4 Plastic material

Exercise 5.4 Plastic material

In the manufacturing of a plastic material, it is believed that the cooling time has
an influence on the impact strength. Therefore a study is carried out in which
plastic material impact strength is determined for 4 different cooling times. The
results of this experiment are shown in the following table:

Cooling times in seconds (x) 15 25 35 40
Impact strength in kJ/m2 (y) 42.1 36.0 31.8 28.7

The following statistics may be used:

x̄ = 28.75, ȳ = 34.65, Sxx = 368.75.

a) What is the 95% confidence interval for the slope of the regression model,
expressing the impact strength as a linear function of the cooling time?
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Solution

The easiest way to get to the confidence interval is to use the standard error for the
slope (σ̂β1 or denoted with SEβ1) given in the R output:

x <- c(15,25,35,40)
y <- c(42.1,36.0,31.8,28.7)
summary(lm(y ~ x))

Call:
lm(formula = y ~ x)

Residuals:
1 2 3 4

0.2814 -0.6051 0.4085 -0.0847

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.639 0.878 56.5 0.00031 ***
x -0.521 0.029 -18.0 0.00308 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.556 on 2 degrees of freedom
Multiple R-squared: 0.994, Adjusted R-squared: 0.991
F-statistic: 324 on 1 and 2 DF, p-value: 0.00308

the standard error for the slope is σ̂β1 = 0.029 (also known as the sampling distribu-
tion standard deviation for β̂1). Finding the relevant t-quantile (with ν = 2 degrees
of freedom (either of):

c(qt(0.025, df=2), qt(0.975, df=2))

[1] -4.303 4.303

|t0.025| = 4.303, which using Theorem 5.15 gives

−0.521± 4.303 · 0.029,

giving
−0.521± 0.125,

or, that we say with high confidence that the true parameter value is in the interval,
i.e.

−0.646 ≤ β1 ≤ −0.396.



Chapter 5 5.4 PLASTIC MATERIAL 14

b) Can you conclude that there is a relation between the impact strength and
the cooling time at significance level α = 5%?

Solution

The relevant p-value can be read off directly from the summary output: 0.00308, and
we can conclude: Yes, as the relevant p-value is 0.00308, which is smaller than 0.05.

c) For a similar plastic material the tabulated value for the linear relation
between temperature and impact strength (i.e the slope) is −0.30. If the
following hypothesis is tested (at level α = 0.05)

H0 : β1 = −0.30
H1 : β1 6= −0.30

with the usual t-test statistic for such a test, what is the range (for t) within
which the hypothesis is accepted?

Solution

The so-called critical values for the t-statistic with ν = 2 degrees of freedom is found
as (or at least the negative one of the two): t0.025 = −4.303 - in R: qt(0.975,2)). So
the answer becomes:

[−4.303, 4.303].
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5.5 Water polution

Exercise 5.5 Water polution

In a study of pollution in a water stream, the concentration of pollution is mea-
sured at 5 different locations. The locations are at different distances to the
pollution source. In the table below, these distances and the average pollution
are given:

Distance to the pollution source (in km) 2 4 6 8 10
Average concentration 11.5 10.2 10.3 9.68 9.32

a) What are the parameter estimates for the three unknown parameters in
the usual linear regression model: 1) The intercept (β0), 2) the slope (β1)
and 3) error standard deviation (σ)?
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Solution

The question is solved by considering the following R-output:

D <- data.frame(concentration=c(11.5, 10.2, 10.3, 9.68, 9.32),
distance=c(2, 4, 6, 8, 10))

fit <- lm(concentration ~ distance, data=D)
summary(fit)

Call:
lm(formula = concentration ~ distance, data = D)

Residuals:
1 2 3 4 5

0.324 -0.488 0.100 -0.032 0.096

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.664 0.365 31.96 0.000067 ***
distance -0.244 0.055 -4.43 0.021 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.348 on 3 degrees of freedom
Multiple R-squared: 0.868, Adjusted R-squared: 0.823
F-statistic: 19.7 on 1 and 3 DF, p-value: 0.0213

Given the knowledge of the R-output structure, the three values can be read off
directly from the output.
So the correct answer is: β̂0 = 11.7, β̂1 = −0.244 and SEσ̂ = σ̂ = 0.348.

b) How large a part of the variation in concentration can be explained by the
distance?

Solution

The amount of variation in the model output (Y) explained by the variable input
(x) can be found from the squared correlation, that can be read off directly from the



Chapter 5 5.5 WATER POLUTION 17

output as "Multiple R-squared". So the correct answer is: R2 = 86.8% (it is actually
an estimate of the variation in concentration which can be explained by distance,
since it is what we found with the particular data at hand. If the sample was taken
again, then this value would vary. We should actually calculate a confidence interval
for R2 to understand how accurate this estimate is!).

c) What is a 95%-confidence interval for the expected pollution concentra-
tion 7 km from the pollution source?

Solution

The wanted number is estimated by the point on the line (using xnew = 7)

−0.244 · 7 + 11.664 = 9.96,

and the confidence interval is given by

9.96± t0.025(3) · σ̂

√
1
5

+ (7− 6)2

Sxx
,

where Sxx = 42 + 22 + 02 + 22 + 42 = 40 and t0.025(3) = 3.182 (in R: qt(0.975,3))
we have that

3.182 · 0.348

√
1
5

+ 1
40

= 0.525,

where sx is:

sd(D$distance)

[1] 3.162

and thus
Sxx = (n− 1) · s2

x = 4 · 3.1622 = 40.

This could also have been found by

predict(fit, newdata=data.frame(distance=7), interval="confidence",
level=0.95)

fit lwr upr
1 9.956 9.431 10.48

So the correct answer is:
9.96± 0.525 = [9.43, 10.5].
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5.6 Membrane pressure drop

Exercise 5.6 Membrane pressure drop

When purifying drinking water you can use a so-called membrane filtration.
In an experiment one wishes to examine the relationship between the pressure
drop across a membrane and the flux (flow per area) through the membrane.
We observe the following 10 related values of pressure (x) and flux (y):

1 2 3 4 5 6 7 8 9 10
Pressure (x) 1.02 2.08 2.89 4.01 5.32 5.83 7.26 7.96 9.11 9.99
Flux (y) 1.15 0.85 1.56 1.72 4.32 5.07 5.00 5.31 6.17 7.04

Copy this into R to avoid typing in the data:

D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

)

a) What is the empirical correlation between pressure and flux estimated to?
Give also an interpretation of the correlation.
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Solution

The questions are most easily solved by using lm in R:

D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

)
fit <- lm(flux ~ pressure, data=D)
summary(fit)

Call:
lm(formula = flux ~ pressure, data = D)

Residuals:
Min 1Q Median 3Q Max

-0.989 -0.318 -0.140 0.454 1.046

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.1886 0.4417 -0.43 0.68
pressure 0.7225 0.0706 10.23 0.0000072 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.645 on 8 degrees of freedom
Multiple R-squared: 0.929, Adjusted R-squared: 0.92
F-statistic: 105 on 1 and 8 DF, p-value: 0.00000718

The found coefficient of determination (see Theorem 5.25) can be read off the R out-
put to be 0.929. The sign of the correlation is the same as the sign of the slope, which
can be read off to be positive (β̂1 = 0.7225), so the correlation is

ρ̂ = r =
√

0.929 = 0.964.

So the empirical correlation is 0.964, and thus flux is found to increase with increas-
ing pressure.

b) What is a 90% confidence interval for the slope β1 in the usual regression
model?
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Solution

We use the formula for the slope (β1, see Method 5.15) confidence interval, and can
actually just realize that the correct t-quantile to use is the t1−0.05(8) = 1.860 (in R:
qt(0.95,8)), and the other values we read of the summary output.
So the confidence interval is: 0.7225± 1.860 · 0.0706.

c) How large a part of the flux-variation (∑10
i=1(yi − ȳ)2) is not explained by

pressure differences?

Solution

The squared correlation, r2 = 0.929 express the explained variation, this means that
1− 0.929 = 0.071 express the unexplained variation by the model.

d) Can you at significance level α = 0.05 reject the hypothesis that the line
passes through (0, 0)?

Solution

The hypothesis is the same as:
H0 : β0 = 0

which is the hypothesis results provided in the output in the "intercept" row of
summary, so: No, since the relevant p-value is 0.68, which is larger than α.

e) A confidence interval for the line at three different pressure levels: xA
new =

3.5, xB
new = 5.0 and xC

new = 9.5 will look as follows:

β̂0 + β̂1 · xU
new ± CU

where U then is either A, B or C. Write the constants CU in increasing
order.
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Solution

The formula for the Confidence limits of α + βxnew includes the following term:

(xnew − x̄)2

Sxx

and this is the ONLY term in CU that makes CU different between the three Us. And
since x̄ = 5.547 it is clear that

(5.0− 5.547)2 < (3.5− 5.547)2 < (9.5− 5.547)2

and hence
(xB

new − 5.547)2 < (xA
new − 5.547)2 < (xC

new − 5.547)2

So CB < CA < CC
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5.7 Membrane pressure drop (matrix form)

Exercise 5.7 Membrane pressure drop (matrix form)

This exercise uses the data presented in Exercise 6 above.

a) Find parameters values, standard errors, t-test statistics, and p-values for
the standard hypotheses tests.

Copy this into R to avoid typing in the data:

D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

)

Solution
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D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

)
fit <- lm(flux ~ pressure, data=D)
summary(fit)

Call:
lm(formula = flux ~ pressure, data = D)

Residuals:
Min 1Q Median 3Q Max

-0.989 -0.318 -0.140 0.454 1.046

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.1886 0.4417 -0.43 0.68
pressure 0.7225 0.0706 10.23 0.0000072 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.645 on 8 degrees of freedom
Multiple R-squared: 0.929, Adjusted R-squared: 0.92
F-statistic: 105 on 1 and 8 DF, p-value: 0.00000718

The parameter estimates are given in the first column, the standard errors in the
second column, the t-test statistics are given in the third column and the p-values of
the standard hypothesis are given in the last column.

b) Reproduce the above numbers by matrix vector calculations. You will
need some matrix notation in R:

– Matrix multiplication (XY): X%*%Y

– Matrix transpose (XT): t(X)

– Matrix inverse (X−1): solve(X)

– Make a matrix from vectors (X = [xT
1 ; xT

2 ]): cbind(x1,x2)

See also Example 5.24.
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Solution

X <- cbind(1, D$pressure)
y <- D$flux
n <- length(y)
beta <- solve(t(X) %*%X ) %*% t(X) %*% y
beta

[,1]
[1,] -0.1886
[2,] 0.7225

e <- y - X %*% beta
s <- sqrt(sum(e^2)/(n-2))
Vbeta <- s^2 * solve(t(X) %*%X )
se.beta <- sqrt(diag(Vbeta))
t.obs <- beta / se.beta
p.value <- 2 * (1 - pt(abs(t.obs), df = n-2))

## Collection in a table
analasis.table <- cbind(beta, se.beta, t.obs, p.value)
analasis.table

se.beta
[1,] -0.1886 0.44171 -0.4269 0.680696710
[2,] 0.7225 0.07064 10.2269 0.000007177

## Put some names on our table
colnames(analasis.table) <- c("Estimates","Std.Error","t.obs","p.value")
rownames(analasis.table) <- c("beta1","beta2")
analasis.table

Estimates Std.Error t.obs p.value
beta1 -0.1886 0.44171 -0.4269 0.680696710
beta2 0.7225 0.07064 10.2269 0.000007177

## Done!!
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5.8 Independence and correlation

Exercise 5.8 Independence and correlation

Consider the layout of independent variable in Example 5.11,

a) Show that Sxx = n·(n+1)
12·(n−1) .

Hint: you can use the following relations

n

∑
i=1

i = n(n + 1)
2

,

n

∑
i=1

i2 = n(n + 1)(2n + 1)
6

.

Solution

x̄ becomes

x̄ = 1
n

n

∑
i=1

i− 1
n− 1

= 1
n(n− 1)

n

∑
i=1

(i− 1)

= 1
n(n− 1)

(
n(n + 1)

2
− n

)
= 1

2
,

and Sxx becomes

Sxx =
n

∑
i=1

(
i− 1
n− 1

− 1
2

)2

= −n
4

+ 1
(n− 1)2

n

∑
i=1

(i2 + 1− 2i)

= −n
4

+ 1
(n− 1)2

(
n(n + 1)(2n + 1)− 6n2

6

)
= n

(n− 1)2

(
4n2 + 6n + 2− 12n− 3(n− 1)2

12

)
= n

(n− 1)2

(
n2 − 1

12

)
= n(n + 1)

12(n− 1) .
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b) Show that the asymptotic correlation between β̂0 and β̂1 is

lim
n→∞

ρn(β̂0, β̂1) = −
√

3
2

.

Solution

The correlation between β̂0 and β̂0 is

ρn(β̂0, β̂1) = Cov(β̂0, β̂1)√
V(β̂0) V(β̂1)

= − σ2 x̄/Sxx√
σ4
(

1
n + x̄2

Sxx

)
1

Sxx

= − x̄/Sxx

1
Sxx

√(
Sxx
n + x̄2

)
= − x̄√

Sxx
n + x̄2

.

Notice that the correlation is not a function of the variance (σ2), but only a function
of the independent variables. Now insert the values of x̄ and Sxx

ρn(β̂0, β̂1) = − 1

2
√

n+1
12(n−1) + 1

4

= − 1

2
√

n+1+3(n−1)
12(n−1)

= − 1

2
√

2n−1
6(n−1)

= −
√

6(n− 1)
2
√

2n− 1

= −1
2

√
6(n− 1)

2(n− 1/2) = −
√

3
2

√
n− 1

n− 1/2

.

which converges to −
√

3
2 for n→ ∞.

Consider a layout of the independent variable where n = 2k and xi = 0 for i ≤ k
and xi = 1 for k < i ≤ n.

c) Find Sxx for the new layout of x.



Chapter 5 5.8 INDEPENDENCE AND CORRELATION 27

Solution

x̄ = 1
2

,

and

Snew
xx =

k

∑
i=1

(
0− 1

2

)2

+
2k

∑
i=k+1

(
1− 1

2

)2

= k
4

+ k
4

= k
2

= n
4

.

d) Compare Sxx for the two layouts of x.

Solution

Sxx

Snew
xx

= n(n + 1)
12(n− 1)

4
n

= (n + 1)
3(n− 1) < 1; f or n > 2

which imply that Snew
xx > Sxx for all n > 2.

e) What is the consequence for the parameter variance in the two layouts?

Solution

The larger Sxx for the new layout imply that the parameter variance is smaller for
the new layout (given that data comes from the same model).

f) Discuss pro’s and cons for the two layouts.
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Solution

The smaller parameter variance for the new layout would suggest that we should
use this layout. However, we would not be able to check that data is in fact generated
by a linear model. Consider e.g. data generated by the model

yi = β0 + β1x2
i + ε i, ε i ∼ N(0, σ2),

if we only look at xi = 0 or xi = 1 we will not be able to detect that the relationship
is in fact non-linear.
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